F.Cadinia,⇑,J.DeSanctisa,A.Cherubinia,E.Zioa,b,M.Rivac,A.GuadagninicaDipartimentodiEnergia–PolitecnicodiMilano,ViaPonzio34/3,I3Milan,ItalyEcoleCentraleParisandSupelec,Paris,FrancecDipartimentodiIngegneriaIdraulica,Ambientale,InfrastruttureViarie,Rilevamento–PolitecnicodiMilano,P.zzaLeonardodaVinci,32,20133Milano,Italybarticleinfoabstract
Wepresentanintegratedframeworkforaprocess-drivenperformanceassessmentofradioactivewasterepositories.Keyfeaturesoftheproposedmodelingstrategyinclude:(1)theuseofMonteCarlo-basedsimulationtomodelradionuclidesmigrationattherepositoryscale,whichallowssimplemanagementofrealisticscenariosand(2)theadoptionofanumericalcodetoproviderealisticdescriptionsofthedynamicsofradionuclidetransportinnaturalgroundwaterbodiesatthegeospherescale,fromthereleaselocationtopossiblehumanintakeoccurrence.Whilerepository-scalesimulationsareperformedbythein-housecodeMASCOT,thesubsequentgroundwaterflowandtransportfieldsaredepictedbymeansofthewidelyknownandextensivelyusednumericalcodesMODFLOWandMT3DMS.Anapplica-tiontoarealisticcasestudyispresentedtoshowthefeasibilityoftheapproach.Ó2011ElsevierLtd.Allrightsreserved.Articlehistory:Received26August2010Receivedinrevisedform31August2011Accepted2September2011Availableonline15October2011Keywords:RadioactivewasterepositoryPerformanceassessmentMonteCarloMODFLOWMT3DMS1.IntroductionAradioactivewasterepositoryisformedbybothartificialandnatural(geologic)barriers.Theseallowpreventingthereleaseofradionuclidesand/orretardingtheirmigrationtothegroundwater,andeventuallytothebiosphere(IAEA,1999a;Yimetal.,2000;NUREG-1573,2000).Aquantitativeperformanceassessment(PA)istypicallyper-formedtobuildtherequiredconfidenceinthesafecontainmentfunctionofaradioactivewasterepository.PAisperformedbytakingintoaccountaccidentalscenarioswhichmayleadtothereleaseofradioactivewastesfromtherepositoryandsubsequentintakebyatargetpopulation.Theassessmentusuallyentails:(i)theidentificationofthescenariosthatchallengetheintegrityoftherepositorybarriers;(ii)theestimationoftheirprobabilitiesofoccurrence;(iii)theestimationoftheconsequencesassociatedwiththereleaseofradionuclides,typicallyintermsoftheexpecteddosereceivedbyapre-definedcriticaltargetgroup;and(iv)theevalua-tionoftheuncertaintiesassociatedwiththeaforementionedestimates(HeltonandSallaberry,2009;Swiftetal.,2008).Inthisframework,afundamentalroleisplayedbytheconceptualandquantitativeanalysisoftheprocessesofradionuclidemigrationacrosstherepositorybarriersandofthedynamicsgoverningradionuclidesspreadingwithinthegeospheretoreachthemaintargetgroups.⇑Correspondingauthor.E-mailaddress:francesco.cadini@polimi.it(F.Cadini).0306-4549/$-seefrontmatterÓ2011ElsevierLtd.Allrightsreserved.doi:10.1016/j.anucene.2011.09.002Thelackofpreciseknowledgeonthephysicalprocessesinvolvedandthevaluesoftheassociatedmodelparametershamperacompletedepictionof(a)themechanismsofreleaseofradionuclidesfromthewasteforms,and(b)thetransportpro-cessesacrosstheengineeredandnaturalbarriers.Aprobabilisticapproachisasuitablewayoftreatingtheuncertaintyarisingintheanalysis.Thisrequiresaneffectivecouplingofprobabilisticcomputationalmodelsofradionuclidesreleasefromtherepositoryandsubsequentmigrationwithinthegeosphere.Inthispaper,anoriginalmodularmodelingframeworkispro-posedthatcouplesaMonteCarlosimulation-basedcompartmentmodelofradionuclidemigrationattherepositoryscale,calledMASCOT(MonteCarloAnalysisofSubsurfaceContaminantTrans-port)(Cadinietal.,2010)withnumericalmodelingoftheflowandtransportprocessesgoverningthemovementofradionuclidesinthesubsurfaceatthegeospherescale.ThelatterisperformedbymeansofthewidelyacceptedandusedcodesMODFLOWandMT3DMS(McDonaldandHarbaugh,1988;ZhengandWang,1999).Thekeyfeaturesoftheproposedframeworkare:(1)theuseofMonteCarlosimulationtomodelradionuclidesmigrationattherepositoryscale,whichallowssimplemanagementofmorerealisticfeatures,e.g.,complexgeometriesandheterogeneities;and(2)thepossibilityofadoptingawidespreadandtestednumer-icalcodetoproviderealisticdescriptionsofthedynamicsofradio-nuclidetransportinnaturalgroundwaterbodiesatthegeospherescale,fromthereleaselocationtopossiblehumanintakeoccur-rence.Moreover,thedetailedlevelofdescriptionoftheproblemofferedbybothmethodsattheexpenseofslightadditional2F.Cadinietal./AnnalsofNuclearEnergy39(2012)1–8modelingeffortsallowsusingmoredirectly-measuredphysicalparametersthanrelyingonconservativeassumptions;thiscanleadtomoreobjectiveanalysesaimedatidentifyingthemarginsofimprovementatthedesignstage,providedthatproperuncer-taintypropagationanalysesbeperformed.Thesefeaturesarehighlightedthroughapplicationtoarealistic,albeitsynthetic,casestudy.Thelatterisbuiltonareferencedesignofanearsurfacerepository(Marseguerraetal.,2001a,b;ENEA,1987)anddataavailableintheliterature(Zuloaga,2006;ENEA,1997).Thepaperisorganizedasfollows.InSection2,theMonteCarlosimulation-basedcompartmentmodelofradionuclidemigrationisillustratedwithreferencetothecasestudy(Cadinietal.,2010;Marseguerraetal.,2001a,b;ENEA,1987).Section3,describesthecouplingbetweentheMonteCarlo-basedcompartmentmodelandthegroundwaterflowandtransportanalysis.ConclusionsonthecapabilitiesoftheproposedprocedurearedrawninSection4.2.EstimationofradionuclidereleasefromanearsurfacerepositorybyMonteCarlosimulationInwhatfollows,aMonteCarlosimulation-basedcompartmentmodel(anAppendixAhasbeenaddedattheendofthepaper,forcompletion)(Cadinietal.,2010)ispresentedwithapplicationtotheestimationofthereleaseofradionuclidesfromanearsurfacerepositoryofadesignconceptstudiedbyENEA(Marseguerraetal.,2001a,b)ThedesignhassimilaritieswiththecurrentlyoperativedisposalfacilityofElCabril,Spain(Zuloaga,2006).Aone-dimensionalspatialrepresentationoftherepositoryalongtheverticaldirectionisconsidered.Fordemonstrationpurposes,groundwaterflowandtransportaredescribedwithinatwo-dimensionaldomaininthehorizontalplane.Themaincontainmentstructuresofthedisposalfacilityarethewastepackages,themodules,thecellsandthedisposalunits.Theseconstituteasetofmultiplebarriersagainstwaterflowandradionuclidemigration.TypicalwastepackagesaredepictedinFig.1.Theyconsistofsteeldrumscontainingtheradioactivewastewhichisimmobilizedinaconcretesolidifiedmatrix.Inourappli-cation,thediameterofawastepackageis0.791manditsheightis1.1m,foratotalvolumetriccapacityofaround400l.Themoduleisaconcretebox-shapedstructure,coveredandsealedwithacon-cretetopcover,whichcontainssixwastepackages.Fig.1depictsacross-sectionofamoduleadoptedinourtest-case.Theemptyspacesbetweenthepackagesarefilledbybentonite.Themoduleexternallengthis3.05m,withwidthandheightrespectivelyequalto2.09mand1.7m.Internaldimensionsare:length=2.75m;width=1.79m;andheight=1.37m.Themodulesarearrangedin5Â6Â8arrayswithinconcretestructurecellsbuiltbelowthenaturalgroundlevelandabovesomeaverageobservedwatertablelevel.Fig.2depictsthemodulesarrangementandtherepositoryplacementatadesignatedsite.Thedisposalunitisaconcretestructureembeddingarowof6–10cells,whereasthewholedisposalfacilityisingeneralmadeupofseveralunits,whicharetypicallyarrangedinparallelrows.Eachunitcanbeseenasrepresentativeofanindependentsystemwhichcanbebuiltandoperatedindividually,withoutinterferenceswiththeotherunits.Withoutanylossofgenerality,weadoptthefollowingsimplify-ingassumptions(Marseguerraetal.,2001a,b):(i)modulesareidentical;(ii)radionuclidemasstransportprevalentlyoccursalongtheverticaldirection;and(iii)lateraldiffusivespreadingissymet-rical.Undertheseconditions,theestimationoftheprobabilityofradionuclidemigrationthroughtherepositorystructuresandreleaseintothegroundwatersystembelowtherepositorycanbereducedtoaone-dimensionalproblemofestimatingthereleasefromacolumnoffiveidenticalverticallystackedmodules.Tothisaim,therepositoryverticalcolumnisrepresentedbyaone-dimensionalarrayoffourcompartments.Transitionsofradio-nuclidesacrosscompartmentsaredescribedstochastically.UndertheassumptionthatthemigrationprocessisMarkovian,theconstanttransitionratescanbeidentified,e.g.,bycomparisonofthegoverningequationswiththeclassicaladvection/dispersionmodel(MarseguerraandZio,2002).Asthetransportfeaturescanbenon-Fickian,otherdistributionscanbeusedtotakeintoaccountthecomplexityoftheprocessesthatcanbeobserved.Inthiscase,therelevanttransportparametersshouldbeestimatedbydetaileddataanalysisandmodelsatthetemporalandspatialscalesatwhichtheprocessesoccur(KawasakiandAhn,2006).Inthemodelingframeworkadopted,eachcompartmentischosensoastocorrespondtoamoduleofthecolumn,withtheexceptionofthemoduleatthetop,whichisnotcrossedbyradio-nuclidesreleasedbyothermodulesandservesonlyasaradionu-clidesourcetothedownstreamcompartment(Marseguerraetal.,2001a,b).Eachcompartmentisthenassignedaradionuclidesourceterm(S),whosetimedistributioncoincideswiththatoftheupstreammodulerelease.Thedistributionofthetransitiontimes(alsoindicatedascrossingtimes,CT)oftheseradionuclideparti-clestothenextcompartmentcanbereasonablyassumedtobeequaltothedistributionofthetimesthattheradionuclidestaketocrossamodule,fromtoptobottom.TheconceptualpictureatthebasisofthisschemeisreportedinFig.3.Themodulessourcetermandthetransition(crossing)timesdistributionsareestimatedbymeansofdetailednumericalsimu-lationsperformedwiththeMonteCarlosimulationcodeMASCOT(Marseguerraetal.,2003;KolmogorovandDmitriev,1945).Themigrationofalargenumberofparticlesof239Puthroughamoduleissimulatedonthebasisoftheprobabilitydistributionfunctionsdescribingthetransportprocessesandtakingintoaccountthephysical–chemicalpropertiesoftheradionuclideandthehostingsystem(MarseguerraandZio,2001).Thesimulationframeworkal-lowstakingintoaccountcomplexgeometriesandheterogeneitiesFig.1.Conceptualdesignofthewastepackage(left)andthemodule(right)(ENEA,1987).F.Cadinietal./AnnalsofNuclearEnergy39(2012)1–83Fig.2.Sketchofthe5Â6Â8arrayofmodulesinarepositorycell(Marseguerraetal.,2001a,b;ENEA,1987).Fig.4.One-dimensionalmodulediscretization.Fig.3.Conceptualschemeoftheproposedcompartmentmodelattherepositoryscale;acompartmentisassociatedtoamodule,excludingthefirstone.S=source;CT=crossingtime.Radionuclidemigrationprevalentlyoccursintheverticaldirection.inthephysical–chemicalpropertiesofthemediathroughwhichparticlesaredisplaced.Fig.4depictstheone-dimensionaldiscret-izationgrid(comprising3500cells)adoptedtocharacterizethemodulestructure.Theinitialdistributionoftheradionuclidesinthewastedrumregionisassumedtobeuniform.ThesourcetermandtransitiontimesdistributionestimatesarereportedinFig.5.Theseplotshavebeenobtainedbysimulatingthemigrationof5500particlestoensurestatisticalconvergenceoftheresults.ThesourcetermandtransitiontimesdistributionsdescribedabovedonotallowrelyingontheclassicalMarkovianrepresenta-tionoftheradionuclidemigrationthroughthecompartmentsoftherepositorycolumn.Thisrendersmandatorytheadoptionofnumericalapproximationschemesforestimatingtheprobabilities,Pn(t),thataradionuclidefallsincompartmentnattimet,n¼1;2;...;Nþ1(N+1indicatingthegroundwatercompart-ment).Inthiscontext,MonteCarlosimulationoffersaviablealter-nativeforestimatingtheprobabilitiesPn(t)and,consequently,theprobabilitydensityfunction,pdfout(t),oftheradionuclidereleaseintothegroundwatersystem.Thestochasticmigrationprocessofalargenumber,M,ofradionuclideparticlesinthefourcompart-mentdomainissimulatedbyrepeatedlysampling(i)thesourceprobabilitydensityofgenerationofradionuclidesineachcompart-ment,and(ii)theprobabilitydistributionoftheirtransitionsacrossthecompartments.Therandomwalkofanindividualradionuclideissimulatedeitheruntilitslifetimeexceedsthetimehorizon,T,oftheanalysis,oritexitsthedomaintoreachtheN+1compartment,i.e.,thegroundwatersystem.Thelatterisanabsorbingstatefromwhichtheparticlesarenotallowedtomovebacktotherepository.Thesimulationtimehorizon,T,isdiscretizedintoNtuniformtimesteps.Acounter,Count(n,k),isassociatedwiththenthcompartment(n¼1;2;...;Nþ1)andthekthtimeinterval(k¼1;2;...;Nt).Duringthesimulation,aunitvalueisaccumu-latedinthecounterCount(n,k)ifaradionuclideparticleresidesincompartmentnattimeintervalkduringitsrandomwalk.AttheendoftheMsimulatedrandomwalksoftheradionuclideparticles,thevaluesaccumulatedinthecountersallowestimatingthetime-dependentprobabilitiesofcompartmentoccupationPn(k)as:PnðkÞffiCountðn;kÞMð1Þ40.010.0090.0080.0070.0060.0050.0040.0030.0020.0010F.Cadinietal./AnnalsofNuclearEnergy39(2012)1–80.035Pu239 crossing time probability density [1/years]01002003004005006007008009001000Pu239 release probability density [1/years]0.030.0250.020.0150.010.005002004006008001000Time [years]Fig.5.239Time [years]239Pureleaseprobabilitydensityfunctionfromamodule(left)andPucrossingtimeprobabilitydensityfunctionofamodule(right).Analogously,thereleaseprobabilitydensityfunctioncanbeestimatedas:pdfoutðtÞffiCountðNþ1;kÞ;MÁDtkDt 因篇幅问题不能全部显示,请点此查看更多更全内容