统计学
费宇 石磊(主编)
第2章 练习题参考答案
2.1解:(1)首先将顾客态度分别用代码1、2、3表示,然后在数据文件的Varible View窗口Values栏定义变量值标签: 1代表“喜欢并愿意购买”;2代表“不喜欢”,3代表“喜欢并愿意购买”。操作步骤:
依次点击File→点击open→点击Data→打开数据文件ex2.1→点击Analyze→点击Descriptive Statistics→点击Frequencies→将“态度”选入Variable框→点击OK。输出结果如表2.1所示:
Valid 1 喜欢并愿意购买 2 不喜欢 3 喜欢但不愿意购买 Total
表2.1 30名顾客对某种产品满意程度的频数分布表 Cumulative Frequency 14 5 11 30 Percent 46.7 16.7 36.7 100.0 Valid Percent 46.7 16.7 36.7 100.0 Percent 46.7 63.3 100.0 (2)根据表2.1频数分布表资料建立的数据文件为
绘制条形图操作步骤:依次点击File→点击open→点击Data→打开数据文件,选中Summaries for groups of cases→单击Define→选中Other Summary function→将“人数”选入Variable(纵轴),将“态度分类”选入Category Axis(横轴)→点击OK。输出结果如图2.1所示:
1
161412108绘制饼图操作步骤:依次点击File→点击open→点击Data→打开数据文件 of individual cases→点击Define→将“人数”选入 Slices Represent栏,将“态度分类”选入Variable栏→点击OK。输出结果如图2.2所示:
2.2解:首先列计算表如表2.2所示:
表2.2 120名学生英语成绩的均值、中位数、众数、偏态系数、峰度系数计算表
按成绩分组(分) 组中值(分) 学生数(个) Mean 人数(人)642不喜欢喜欢不买喜欢愿买态度分类 图2.1 30名顾客满意程度分布条形图
喜欢不买喜欢愿买不喜欢 图2.2 30名顾客满意程度分布饼图
xifi (xix)fi 2 (xix)fi 3(xix)4fi 2
xi 60以下 60~70 70~80 80~90 90以上 合 计 55 65 75 85 95 — fi 19 30 42 18 11 120 1045 1950 3150 1530 1045 8720 5932.35 1764.87 228.01 2736.52 5484.92 16146.67 -104824.61 -13536.53 531.27 33741.29 122478.22 38389.64 1852250.83 103825.18 1237.86 416030.16 2734938.58 5108282.61 (1)均值xxi15i15ifiif8720 72.67(分)120表2.2中,分布次数最多的组是“40~50”组,这就是众数所在组;中位数大约在第60位,可确定中位数也在“40~50”组。
众数M0L14230 i701073.33(分)12(4230)(4218)N=60,2N120Sm14922i701072.62(分)中位数MeL fm42(2)首先计算标准差:s(xx)f2ii1nifi1k 11.65(分)i1SK(xx)i1k3fi/fii1ks338389.64/1200.2023
11.653由计算结果可看出,偏态系数为正值,但与零的差距不大,说明120名大学生英语成绩为轻微右偏分布,成绩较低的同学占有一定的比例,但偏斜程度不大。
K(xx)i1k4fi/fii1ks435108282.61/12030.6891
11.654由计算结果可看出,峰度系数为负值,说明120名大学生英语成绩为平峰分布,成绩较低的同学占一定比例,但低成绩区域的集中程度并不很高。
2.3解(1)整理的组距数列如表
表2.3.1 连续60天计算机销售量频数分布表
3
按销售量分组(台) 10~20 20~30 30~40 40~50 合 计 天数(天) 2 6 23 29 60 比重(%) 3.33 10.00 38.33 48.34 100.00 (2) 下面使用SPSS16.0绘制图形:
绘制直方图操作步骤:点击File→点击open→点击Data→读取数据文件ex2.3→点击Graphs→点击Histogram→将“销售量”选入Variable栏→点击OK。若选中 Display normal curve 选项,则在生成的直方图上还显示正态曲线。输出结果如图
1412108642017.520.022.525.027.530.032.535.037.540.042.545.047.550.0Std. Dev = 7.14 Mean = 37.9N = 60.00销售量(台) 图2.3.1 连续60天计算机销售量直方图
从图,连续60天中,销售量为40~50台的天数较多。
绘制简单箱线图操作步骤:点击File→点击open→点击Data→读取数据文件ex2.3→点击Graphs→点击Boxplot→选中simple,选中summaries of separate Variables→点击Define→将“销售量”选入Boxes Represent栏→点击Ok。输出结果如图
4
6050403020596010N =60销售量(台) 图2.3.2 连续60天计算机销售量箱线图
从图,下横线之外有两个点,它们分别是第59和第60个观测值,原始数据中可查到,这两天的销售量分别为19台和18台,它们是离总体观测数据较远的离群点。
绘制茎叶图操作步骤:点击File→点击open→点击Data→读取数据文件ex2.3→点击Analyze→点击Descriptive Statistics-Explore→将“销售量”选入“Dependent List”栏→点击Ok。输出结果如图
销售量(台) Stem-and-Leaf Plot Frequency Stem & Leaf 2.00 Extremes (=<19) 1.00 2 . 2 5.00 2 . 56899 8.00 3 . 00223344 15.00 3 . 7788899 19.00 4 . 000 10.00 4 . 89 Stem width: 10 Each leaf: 1 case(s)
图2.3.3 连续60天计算机销售量茎叶图
(3)描述统计分析操作步骤:点击File→点击open→点击Data→读取数据文件ex2.3→点击Analyze→点击Descriptive Statistics→Descriptives→将“销售量”选入Variable栏→点击Options,选中 Mean(均值)、Std.(标准差)、Minimum(最小值)、Maximum(最大值)、Kurtosis(峰态系数)、Skwness(偏态系数),选中Variable list(变量顺序排列显示输出结果)→点击Continue→点击Ok。输出结果如表
表2.3.2 连续60天计算机销售量的描述统计量
5
Descriptive Statistics
XSHL 销售量(台) Valid N (listwise)
60
60
18
49
37.88
7.140
-.879
.309
.422
.608
N
Minimum Maximum Mean
Std.
Skewness
Kurtosis
Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std.Error
表,连续60天中计算机销售量的最小值为18台,最大值为49台,平均销售量为37.88台,标准差为7.14台;偏态系数为-0.879,表明计算机销售量为左偏分布,在连续60天中,销售量较高的天数占一定比例,具有一定的偏斜度;峰态系数为0.608,表明计算机销售量为尖峰分布,销售量较高的天数具有一定的集中度。
第3章 练习题参考答案
3.1 解:
操作步骤:
Analyze→Descriptive Statistics→Explore,将x选入Dependent List,在Statistics中选中Descriptives
输出结果 表3-1 Descriptives x Mean Statistic 180.0500 156.8678 203.2322 172.3556 156.0000 13649.967 116.83307 24.00 510.00 486.00 130.25 1.112 Std. Error 11.68331 95% Confidence Interval for Mean Lower Bound Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness .241 6
表3-1 Descriptives x Mean Statistic 180.0500 156.8678 203.2322 172.3556 156.0000 13649.967 116.83307 24.00 510.00 486.00 130.25 1.112 .572 Std. Error 11.68331 95% Confidence Interval for Mean Lower Bound Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis .241 .478 结果分析:
由表3-1可知,该超市每位顾客的平均花费金额的点估计180.0500,可信度为95%的区间估计为(156.8678,203.2322)(保留两位小数)。 3.2 解:
(1)先估计每位顾客平时的平均花费金额和周末的平均花费金额的置信区间
操作步骤:
Analyze→Descriptive Statistics→Explore,将x选入Dependent List,将顾客总体选入Factor List,在Statistics中选中Descriptives;
输出结果: 表3-2-1 Descriptives x 顾客总体 总体一 Mean 95% Confidence Interval for Lower Bound Mean 5% Trimmed Mean Median Variance Upper Bound Statistic 159.8000 124.5854 195.0146 150.3778 116.0000 15353.469 Std. Error 17.52340 7
123.90912 24.00 480.00 456.00 139.75 1.264 .713 200.3000 169.9718 230.6282 192.8222 177.5000 11388.173 106.71539 55.00 510.00 455.00 109.25 1.237 1.059 .337 .662 .337 .662 15.09183 Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis 总体二 Mean 95% Confidence Interval for Lower Bound Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Upper Bound (2)再估计二者的差的置信区间 操作步骤:
Analyze→Compare means→Independent—Samples T test,将x选入Test Variable(s),将顾客总体选入Grouping Variable(s),在Define Groups中分别定义总体一和总体二。
输出结果: 表3-2-2 Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Sig. F Sig. t df Mean Std. Error Interval of the Difference (2-tailed) Difference Difference 8
x Equal variances assumed Equal variances not assumed 1.312 .255 -1.751 98 Lower Upper .083 -40.50000 23.12645 -86.39369 5.39369 -1.751 95.892 .083 -40.50000 23.12645 -86.40631 5.40631 结果分析:
表3-2-1是探索性分析的结果,可知每位顾客平时的平均花费金额的置信区间为(124.5854,195.0146),周末的平均花费金额的置信区间为(169.9718,230.6282)。表3-2-2是独立样本t检验的结果,Levene's Test for Equality of Variances为方差检验的结果,F=1.312,其P值为0.255<0.05,拒绝方差相等的原假设,认为两总体的方差不等,因此两总体的差的置信区间为(-86.40631,5.40631) 3.3 解:
操作步骤:
Analyze→Descriptive Statistics→Explore,将x选入Dependent List,在Statistics中选中Descriptives;
输出结果: 表3-3 Descriptives x Mean Statistic 68.1875 64.4538 71.9212 68.1528 67.5000 49.096 7.00684 55.00 82.00 Std. Error 1.75171 95% Confidence Interval for Mean Lower Bound Upper Bound 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum 9
27.00 6.50 .290 .482 .564 1.091 Range Interquartile Range Skewness Kurtosis 结果分析:
表3-3是探索性分析的结果,由分析结果可知,该市成年男子体重置信度为95%的区间估计为(64.4538,71.9212)。 3.4 解:
由中心极限定理可知:nXnp近似的服从N(0,1)分布,于是有
np(1p)nXnpz/21 (3.4) Pz/2np(1p)该市所有家庭中安装了宽带上网的家庭的百分比为p是(0,1)分布的参数,
n200,x192/2000.96,10.95,z/21.96,代入式(3.4)求得p的
置信水平为95%的置信区间为(0.92,0.98)
第4章 练习题参考答案
4.1 解:
操作步骤:
10
进行单样本T检验,Analyze→Compare means→One—Samples T test,将x选入Test Variable(s),在Test Value中输入0.618。
输出结果:
表4-1 One-Sample Test x t 2.884 df 15 Test Value = 0.618 95% Confidence Interval of the Difference Sig. (2-tailed) Mean Difference .011 .072813 Lower .01901 Upper .12662 结果分析:
P0.0110.05,根据表4-1中单样本T检验的结果,按显著性水平0.05无法拒绝x0.618的原假设,认为该厂生产的工艺品框架宽与长的比值符合黄金比率。
4.2 解:
H0:p>=50% H1:p<50% p=160/360=44.44% Z=
p044.44%50%==-2.11
0(10)50%(150%)n3602这是一个单侧检验,-z=-1.645 拒绝原假设,这个专家的论断不成立。
4.3 解:
H0:XX030000,即该厂家广告可信 H1:XX030000,即该厂家广告不可信 操作步骤:
进行单样本T检验,Analyze→Compare means→One—Samples T test,将x选入Test Variable(s),在Test Value中输入0.618。
输出结果:
11
表4-3-1 One-Sample Statistics x N 12 Mean 30905.8333 Std. Deviation 1888.37332 Std. Error Mean 545.12642 表4-3-2 One-Sample Test x t 1.662 df 11 Test Value = 30000 95% Confidence Interval of the Difference Sig. (2-tailed) Mean Difference .125 905.83333 Lower -293.9818 Upper 2105.6485 结果分析:
由表4-3-1可知,样本均值为30905.8333,表4-3-2是单样本双侧T检验的结果,可知平均寿命95%的置信区间为(-293.9818,2105.6485),根据平均寿命大于0以及双侧检验和单侧检验的关系,95%的单侧置信区间应为(0,2105.6485),该置信区间与显著性水平0.05的本题的左边检验问题相对应,而X0=30000并不在置信区间(0,2105.6485)内,因此拒绝H0,认为该厂家的广告不可信。
4.4 解: 操作步骤:
进行独立样本T检验,Analyze→Compare means→Independent—Samples T test,将x选入Test Variable(s),将顾客总体选入Grouping Variable(s),在Define Groups中分别定义总体一和总体二。
输出结果: 表4-4 Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Interval of the Sig. Mean Std. Error Difference Lower Upper F Sig. t df (2-tailed) Difference Difference 12
x Equal variances assumed Equal variances not assumed 1.312 .255 -1.751 98 .083 -40.50000 23.12645 -86.39369 5.39369 -1.751 95.892 .083 -40.50000 23.12645 -86.40631 5.40631
结果分析:
表4-4是单样本T检验的结果。首先根据该表方差齐性检验的结果,
F1.312,Sig.0.255,即P0.05,无法拒绝方差齐性的原假设,认为两个总
体的方差相等。在方差齐性的假设下,独立样本t检验结果为:t1.751,
Sig.(2tailed)0.083,P0.05,无法拒绝两个总体的平均花费金额相同的原
假设,认为该超市每位顾客平时(周一至周五)的平均花费金额与周末(周六和周日)的平均花费金额是相同的0.05。 4.5 解:
操作步骤:
进行配对样本T检验,Analyze→Compare means→Paired—Samples T test,将X1选入Test Variable1,将X2选入Variable2。
输出结果: 表4-5-1 Paired Samples Statistics Pair 1 促销前销售量 促销后销售量 Mean 34.9000 38.6000 N 10 10 Std. Deviation 4.81779 4.94862 Std. Error Mean 1.52352 1.56489 表4-5-2 Paired Samples Correlations Pair 1 促销前销售量 & 促销后销售量 N 10 Correlation .954 Sig. .000 表4-5-3 Paired Samples Test Paired Differences t df Sig. 13
Std. Std. Error Mean 95% Confidence Interval of the Difference Lower Upper 9 (2-tailed) 1 促销后销售量 Mean Deviation -3.70000 1.49443 Pair 促销前销售量 - .47258 -4.76905 -2.63095 -7.829 .000 结果分析:
由表4-5-1可知,促销前的平均销售量为34.9000,促销后的平均销售量为38.6000。由表4-5-2可知促销前后的相关系数为0.954,P=0.000<0.05,两者相关性显著。根据表4-5-3中配对样本t检验的结果,得到t7.829,
Sig.(2tailed)0.000,P0.05,在0.05水平下,拒绝原假设,认为促销后
销售量有明显的提高。
第8章 练习题参考答案
8.1解:(1)x2nn50.79 40 (2)xZ2x1.960.791.55 8.2(数据文件为ex8.2)
解:(1)xx3.32(小时)
n (2)sxxn121.61 (小时)
x2n1.61236110.27(小时) nN367500P(1P)23%(123%)2.98% n2008.3解:
p当置信度为90%时 pZ2p1.6452.98%4.90%
当置信度为95%时 pZ2p1.962.98%5.84%
14
22Z28.4解: nx8.5解:
2x1.9621202138.30139(人) 220P1(1P1)2%98%1.96%
P2(1P2)3%97%2.91% P3(1P3)4%96%3.84%
np2Z2P3(1P3)2p1.9624%(14%)92.2093 24%第9章练习题参考答案
9.1解:(1)三种商品的销售量个体指数分别为:
872080%;B:100%;C、133.33% 10715三种商品的销售价格个体指数分别为:
402050133.33%;B:100%;C、83.33% A:302060(2)三种商品的销售量总指数为:
A:
Lqpqpq010030820760201580117.91%
30102076015134040820750201460113.18%
401020750151290或Pqpqpq10001110三种商品的销售价格总指数为:
Lppqpq1290p1q1146092.41%
96.27%;或Pp1340p0q11580比较:由于拉氏指数与帕氏指数的同度量因素固定时期不同,因而对同一指数的计算结果也就不同。本题中,拉氏指数的计算结果大于帕氏指数。
9.2解:销售额指数Vpqpq1100123754695139.71%
102852468销售额变动绝对额:p1q1p0q0956827 (万元)销售量指数Lqpqpq0100103852682120.59%
6868销售量变动对销售额的影响额:p0q1p0q0826814 (万元)15
销售价格指数Pppqpq110195115.85% 82销售价格变动对销售额的影响额:p1q1p0q1958213 (万元)以上三个指数之间的关系为:
相对数方面:139.71%=120.59%×115.85% 绝对数方面:27(万元)=14(万元)+13(万元)
计算结果表明:报告期与基期相比,由于三种商品的销售量增长20.59%,使销售额增加了14万元;又由于三种商品的销售价格上涨15.85%,使销售额增加了13万元。两个因素共同作用的结果,使销售额最终增长39.71%,共增加了27万元。
第3章 案例分析
1.两个社区的家庭月平均收入和购物月平均支出基本服从正态分布。设家庭月
2平均收入X~N(1,12),购物月平均支出Y~N(2,2)。
当2未知时,的置信水平为1的置信区间
[xt(n1)2sn,xt(n1)2sn]
而2的置信水平为1的置信区间为
(n1)s2(n1)s2[2,2] (n1)1(n1)2222查表知,t0.025(49)2.009,0.025(49)71.42,0.975(49)32.357
(1) 对于社区A,家庭月平均收入95%的置信区间:
用SPSS打开数据case-study 3,选择Analyze→Descriptive Statistics→Explore,将社区A家庭月平均收入(x1)选入Dependent List,在左下角Display 中点击Both,然后在中下方Statistics中选Descriptives和置信度(默认值为95%),最后点击Continue→OK,可以输出如下表3.5,
表3.5 社区A家庭月平均收入95%的置信区间 Descriptives 16
社区A家庭月平均收入 Mean Statistic 5360.0000 4934.1496 5785.8504 5377.7778 5500.0000 2245306.122 1498.43456 1500.00 8500.00 7000.00 2000.00 -.206 .137 Std. Error 211.91065 95% Confidence Interval for Lower Bound Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Upper Bound .337 .662 所以,家庭月平均收入期望值的置信水平为95%的置信区间 [4934.15,5785.85], 而经过计算可得,标准差95%的置信区间为[776.27,1153.28]。
同理,购物月平均支出使用SPSS软件操作如上,只是将社区A家庭购物月平均支出(y1)选入Dependent List,输出以下表3.6,
表3.6 社区A家庭月平均支出95%的置信区间 Descriptives 社区A家庭购物月平均支出 Mean Statistic 1176.0000 1094.2829 1257.7171 1177.7778 1200.0000 82677.551 287.53704 600.00 1800.00 1200.00 400.00 Std. Error 40.66388 95% Confidence Interval for Lower Bound Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Upper Bound 17
Skewness Kurtosis
.090 -.648 .337 .662 所以,购物月平均支出期望值的置信水平为95%的置信区间 [1094.28,1257.72],而经过计算可得,标准差95%的置信区间为[155.47,230.97]。 (2) 对于社区B,家庭月平均收入95%的置信区间:
用SPSS打开数据case-study 3,选择Analyze→Descriptive Statistics→Explore,将社区B家庭月平均收入(x2)选入Dependent List,在左下角Display 中点击Both,然后在中下方Statistics中选Descriptives和置信度(默认值为95%),最后点击Continue→OK,可以输出如下表3.7,
表3.7 社区B家庭月平均收入95%的置信区间 Descriptives 社区B家庭月平均收入 Mean Statistic 5320.0000 4883.8996 5756.1004 5300.0000 5500.0000 2354693.878 1534.50118 2500.00 8500.00 6000.00 2000.00 .174 -.414 Std. Error 217.01124 95% Confidence Interval for Lower Bound Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Upper Bound .337 .662 所以,家庭月平均收入期望值的置信水平为95%的置信区间 [4883.90,5756.10],而经过计算可得,标准差95%的置信区间为[774.3,1150.36]。
同理,购物月平均支出用SPSS软件操作如上,只是将社区B家庭购物月平均支出(y2)选入Dependent List,可以输出如下表3.8,
表3.8 社区B家庭月平均支出95%的置信区间 Descriptives 18
社区B家庭购物月平均支出 Mean Statistic 1192.0000 1100.1624 1283.8376 1193.3333 1200.0000 104424.490 323.14778 400.00 1800.00 1400.00 400.00 .158 -.269 Std. Error 45.70000 95% Confidence Interval for Lower Bound Mean 5% Trimmed Mean Median Variance Std. Deviation Minimum Maximum Range Interquartile Range Skewness Kurtosis Upper Bound .337 .662 所以,购物月平均支出期望值的置信水平为95%的置信区间 [1100.16,1283.84],而经过计算可得,标准差95%的置信区间为[156.43,232.41]。 2.大样本条件下,总体比例p的置信度近似为1的置信区间为
ˆZ2[pˆ(1pˆ)ˆ(1pˆ)ppˆZ2,p] nn由于,5%,查表知,Z0.0251.96。
ˆ1(1)对于社区A,购物月平均支出占月平均收入的比例py111760.2194 x15360所以,p1置信度为95%的置信区间为[0.1047,0.3341]。
ˆ2(2)对于社区B,购物月平均支出占月平均收入的比例py211920.2241 x25320所以,p2置信度为95%的置信区间为[0.1085,0.3396].
3.大样本条件下,总体比例之差p1p2的置信度近似为1的置信区间为
ˆ1pˆ2)Z2(pˆ1(1pˆ1)pˆ(1pˆ2)p2n1n2 19
所以,两个社区购物月平均支出占月平均收入的比例之差置信度为95%的置信区间为[0.1675,0.1581]。
4.综上,两个社区家庭的月平均收入和用于购物的月平均支出都比较接近,而且购物占收入的比例基本上在20%左右,比较稳定,说明可以考虑在两个社区附近建立一个方便人们日常生活的小规模购物中心。如果经过一段时间重新进行调查,发现社区居民购物占收入的比例持续上升,则可以考虑扩大购物中心的规模,增加销售商品的种类。
20
因篇幅问题不能全部显示,请点此查看更多更全内容