高新区2009—2010学年度第一学期期末测试
九年级数学
(全卷共130分,考试时间120分钟)
题号 一 二 三 19-20 21-22 23-24 25-26 得分 27 28 总分 一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符
合题目要求的,将每题的选项填入下表相应空格中) 题号 答案 1 2 3 4 5 6 7 8 1.方程x(x+2)=0的根是
A.x=2 B.x=0 C.x1=2,x2=0 D.x1=-2,x2=0 2.对于抛物线y12x53,下列说法正确的是 3 A.开口向下,顶点坐标是(5,3) B.开口向上,顶点坐标是(5,3) C.开口向下,顶点坐标是(-5,3) D.开口向上,顶点坐标是(-5,3) 3.如图所示,点A、B、C都在⊙O上,且点C在弦AB所对的优弧 上,若∠AOB=72°,则∠ACB的度数是
A.18° B.30° C.36° D.72°
4.某市有7 万名初中毕业生会考,为了解7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是 A.7万名考生是总体 B.每名考生的数学成绩是个体 C.1000名考生是总体的一个样本 D.1000名考生是样本的容量
上时,BC的5.如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的EF长度等于
B. 64C. D.
32A.
6.已知圆锥的侧面积为10cm,底面半径为1,则该圆锥的母线长为
2
A.100cm B.10cm C.10cm D.7.已知⊙O1与⊙O2相切,它们的半径分别为2和5,则O1O2的长是
10 10 A.5 B.3 C.3或5 D.3或7
8.二次函数y=ax+bx+c的图象如图所示,则一次函数y=bx+b-4ac与反比例函数
2
2
y
abc在同一坐标系内的图象大致为 x 二、填空题
(本题共10小题,每小题3分,共30分,把答案填在题中横线上) 9.设x1,x2是方程x-4x-2=0的两个实数根,则x1+x2=_________. 10.抛物线y=x+x-4与y轴的交点坐标为_________.
11.若关于x的方程x+2(k-1)x+k=0有实数根,则k的取值范围是___________.
12.把二次函数y=-2x+1的图象沿x轴向右平移3个单位,沿y轴向下平移2个单位,则平移
后的图象所表示的函数解析式是___________________.
13.如图,⊙O的半径为5,弦AB=8,OC⊥AB于C,则OC的长等于__________.
22
2
2
2
14.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位
上,则A与B不相邻而坐的概率是__________.
15.二次函数y=ax+bx+c(a≠0)的图像如图所示,试根据图像写出对称轴为__________. 16.近年来,我国长江、黄河流域植被遭到破坏,导致土地沙化,洪涝灾害时有发生.沿黄某地
区为积极响应和支持“保护母亲河”的倡议,在2000年建立了长 100km,宽0.5km的防护林.今年,有关部门为统计这一防护林约有多少棵树,从中选出10块(每块长1km,宽0.5km)统计,数量如下(单位:棵):
2
65110 63200 64600 64700 67300 63300 65100 66600 62800 65500
根据以上数据可知这一防护林约有__________棵树.
17.将一条长为10cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这
两个正方形面积之和的最小值是___________cm.
18.如右图,把⊙O1向右平移8个单位长度得⊙O2,两圆相交于A、B, 且O1A⊥O2A,则图中阴影部分的面积是__________.
三、解答题(本题共10小题,共76分,解答应写出必要的计算过程、推演步骤或文字说明) 19.(本题满分6分)解下列方程:
(1)x-2x-3=0 (2)(x-3)+2x(x-3)=0
20.(本题满分6分)如图,已知:AB、CD是⊙O内非直径的两弦,求证AB与CD不能互相平分.
2
22
21.(本题满分6分)如图,直线l经过A(-2,0)和B(0,2)两点,它与抛物线y=ax在第二象限
2
内相交于点P,且△AOP的面积为1,求a的值.
22.(本题满分8分)有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别
标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)若用(m,n)表示小明取球时m与n的对应值,请写出(m,n)的所有取值; (2)求关于x的一元二次方程xmx
23.(本题满分8分)2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~
2011年)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.
(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元? (2)该市政府2009年投入“需方”和“供方”的资金各多少万元?
(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的
资金投入按相同的增长率递增,求2009~2011年的年增长率.
21n0有实数根的概率. 2BD,⊙O的切线BF与弦AD24.(本题满分8分)如图,⊙O的直径AB与弦CD相交于E,BC的延长线相交于点F. (1)求证:CD∥BF.
(2)连结BC,若⊙O的半径为cosBCD3,求线段AD、CD的长. 4
25.(本题满分8分)某中学初三(1)班的学生在学完“统计初步”后,对本校学生会自愿捐款活
动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.
(1)他们一共调查了多少人? (2)这组数据的众数、中位数是多少? (3)若该校共有2000名学生,估计全校学 生大约捐款多少元?
26.(本题满分8分)如图,在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、
b是方程x-(m-1)x+m+4=0的两根, (1)求a和b的值;
(2)若△A′B′C′与△ABC开始时完全重合,然后让△ABC固定不动,将△A′B′C′沿BC所在的直线向左移动x厘米.
①设△A′B′C′与△ABC有重叠部分,其面积为y平方厘米,求y与x之间的函数关系式,
并写出x的取值范围; ②若重叠部分的面积等于
2
3平方厘米,求x的值. 8
27.(本题满分8分)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;
(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为t(s)(0<t<2),连结EF,当t为何值时,△BEF
为直角三角形.
28.(本题满分10分)如图,抛物线y=ax+bx-3与x轴交于A,B两点,与y轴交于C点, 且经过点(2,-3a),对称轴是直线x=1,顶点是M.
(1)求抛物线对应的函数表达式;
(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由: (3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与BD重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;
(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立?请直接写出结论.
2
因篇幅问题不能全部显示,请点此查看更多更全内容