搜索
您的当前位置:首页正文

指数函数

来源:二三娱乐
指数函数

求助编辑百科名片

指数函数图像例子

指数函数的一般形式为y=a^x(a>0且≠1) (x∈R). 它是初等函数中的一种。它是定义在实数域上的单调、下凸、无上界的可微正值函数。

目录

数学术语

公式推导

函数图像

幂的比较

定义域

值域

化简技巧

对应关系

编辑本段数学术语

指数函数是数学中重要的函数。应用到值 e上的这个函数写为 exp(x)。还能够等价的写为 e,这里的 e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。

当a>1时,指数函数对于 x的负数值非常平坦,对于 x的正数值迅速攀升,在 x等于 0 的时候等于 1。当0作为实数变量 x的函数,y=e^x 的图像总是正的(在 x轴之上)并递增(从左向右看)。它永不触及 x轴,即使它能够任意水准的靠近它(所以,x轴是这个图像的水平渐近线。它的反函数是自然对数ln(x),它定义在所有正数 x上。

有时,尤其是在科学中,术语指数函数更一般性的用于形如 kax 的

指数函数

函数,这里的 a 叫做“底数”,是不等于 1 的任何正实数。本文最初集中于带有底数为欧拉数 e 的指数函数。

指数函数的一般形式为y=a^x(a>0且≠1) (x∈R),从上面我们关于幂函数的讨论就能够知道,要想使得x能够取整个实数集合为定义域,则只有使得

如图所示为a的不同大小影响函数图形的情况。

在函数y=a^x中能够看到:

(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存有连续的区间,所以我们不予考虑,

同时a等于0函数无意义一般也不考虑。

(2) 指数函数的值域为大于0的实数集合。

(3) 函数图形都是下凸的。

(4) a大于1时,则指数函数单调递增;若a小于1大于0,则为单调递减的。

(5) 能够看到一个显然的规律,就是当a从0趋向于无穷大的过

指数函数

程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。

(7) 函数总是通过(0,1)这点,(若y=a^x+b,则函数定过点(0,1+b)

(8) 显然指数函数无界。

(9) 指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

(11)当指数函数中的自变量与因变量一一映射时,指数函数具有反函数。

编辑本段公式推导

e的定义:e=lim(x→∞)(1+1/x)^x=2.718281828...

设a>0,a!=1----(log a(x))'

=lim(Δx→∞)((log a(x+Δx)-log a(x))/Δx)

=lim(Δx→∞)(1/x*x/Δx*log a((x+Δx)/x))

=lim(Δx→∞)(1/x*log a((1+Δx/x)^(x/Δx)))

=1/x*lim(Δx→∞)(log a((1+Δx/x)^(x/Δx)))

=1/x*log a(lim(Δx→0)(1+Δx/x)^(x/Δx))

=1/x*log a(e)特殊地,

当a=e时,

(log a(x))'=(ln x)'=1/x。

设y=a^x两边取对数ln y=xln a两边对求x

导y'/y=ln ay'=yln a=a^xln a特殊地,

当a=e时,y'=(a^x)'=(e^x)'=e^xln e=e^x。

编辑本段函数图像

指数函数

(1)由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相对应的底数由小变大。

(2)由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相对应的底数由大变小。

(3)指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低”。(如右图)》。

编辑本段幂的比较

比较大小常用方法:(1)比差(商)法:(2)函数单调性法;(3)中间值法:要比较A与B的大小,先找一个中间值C,再比较A与C、B与C的大小,由不等式的传递性得到A与B之间的大小。

比较两个幂的大小时,除了上述一般方法之外,还应注意:

(1)对于底数相同,指数不同的两个幂的大小比较,能够利用指数函数的单调性来判断。

例如:y1=3^4,y2=3^5,因为3大于1所以函数单调递增(即x的值越大,对应的y值越大),因为5大于4,所以y2大于y1.

(2)对于底数不同,指数相同的两个幂的大小比较,可

指数函数

以利用指数函数图像的变化规律来判断。

例如:y1=1/2^4,y2=3^4,因为1/2小于1所以函数图像在定义域上单调递减;3大于1,所以函数图像在定义域上单调递增,在x=0是两个函数图像都过(0,1)然后随着x的增大,y1图像下降,而y2上升,在x等于4时,y2大于y1.

(3)对于底数不同,且指数也不同的幂的大小比较,则能够利用中间值来比较。如:

<1> 对于三个(或三个以上)的数的大小比较,则应该先根据值的大小(特别是与0、

1的大小)实行分组,再比较各组数的大小即可。

<2> 在比较两个幂的大小时,如果能充分利用“1”来搭“桥”(即比较它们与“1”的大小),就能够快速的得到答案。那么如何判断一个幂与“1”大小呢?由指数函数的图像和性质可知“同大异小”。即当底数a和1与指数x与0之间的不等号同向(例如: a 〉1且x 〉0,或0〈 a〈 1且 x〈 0)时,a^x大于1,异向时a^x小于1.

〈3〉例:下列函数在R上是增函数还是减函数?说明理由.

⑴y=4^x

因为4>1,所以y=4^x在R上是增函数;

⑵y=(1/4)^x

因为0<1/4<1,所以y=(1/4)^x在R上是减函数

编辑本段定义域

指代一切实数(-∞,+∞),就是R。

编辑本段值域

对于一切指数函数y=a^x来讲。他的a满足a>0且a≠1,即说明y>0。所以值域为(0,+∞)

编辑本段化简技巧

(1)把分子、分母分解因式,可约分的先约分

(2)利用公式的基本性质,化繁分式为简分式,化异分母为同分母

(3)把其中适当的几个分式先化简,重点突破.

指数函数

(4)可考虑整体思想,用换元法使分式简化

编辑本段对应关系

(1)曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞).

(2)曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠

指数函数

近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)

(3)曲线过定点(0,1)〈=〉x=0时,函数值y=a^0(零次方)=1(a>0且a≠1)

(4)a>1时,曲线由左向右逐渐上升即a>1时,函数在(-∞,+∞)上是增函数;0

因篇幅问题不能全部显示,请点此查看更多更全内容

Top