您好,欢迎来到二三娱乐。
搜索
您的当前位置:首页2020年六年级数学易错题难题综合训练题

2020年六年级数学易错题难题综合训练题

来源:二三娱乐
2020年六年级数学易错题难题综合训练题

一、培优题易错题

1.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.

(1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数 是多少? (3)应用 求从下到上前31个台阶上数的和.

发现 试用含k(k为正整数)的式子表示出数“1”所在的台阶数. 【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3

(2)解:由题意得-2+1+9+x=3, 解得:x=-5,

则第5个台阶上的数x是-5

(3)解:应用:由题意知台阶上的数字是每4个一循环, ∵31÷4=7…3, ∴7×3+1-2-5=15,

即从下到上前31个台阶上数的和为15; 发现:数“1”所在的台阶数为4k-1

【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.

2.某工厂一周计划每天生产电动车80辆,由于工人实行轮休,每天上班人数不同,实际每天生产量与计划量相比情况如表(增加的为正数,减少的为负数): 日期 一 二 三 四 五 六 日 增减数/辆 +4 -1 +2 -2 +6 -3 -5 (1)生产量最多的一天比生产量最少的一天多生产多少辆电动车?

(2)本周总生产量是多少辆?比原计划增加了还是减少了?增加或减少多少辆? 【答案】(1)解:生产量最多的一天比生产量最少的一天多生产6-(-5)=6+5=11辆; (2)解:总产量4+(-1)+2+(-2)+6+(-3)+(-5)+80×7=561辆,

比原计划增加了,增加了561-560=1辆.

【解析】【分析】(1)根据列表得到生产量最多的一天是星期五,是(80+6)辆,产量最少的一天是星期日是(80-5)辆,生产量最多的一天比生产量最少的一天多生产6-(-5)辆;(2)根据题意总产量是80×7+4+(-1)+2+(-2)+6+(-3)+(-5),找出相反数,再由减去一个数等于加上这个数的相反数,求出本周总生产量,得到比原计划增加或减少了的值.

3.如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.

(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是________; (2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8 ①第几次滚动后,小圆离原点最远?

②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)

(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数. 【答案】(1)-4π

(2)解:①第1次滚动后,|﹣1|=1, 第2次滚动后,|﹣1+2|=1, 第3次滚动后,|﹣1+2﹣4|=3, 第4次滚动后,|﹣1+2﹣4﹣2|=5, 第5次滚动后,|﹣1+2﹣4﹣2+3|=2, 第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10, 则第6次滚动后,小圆离原点最远; ②1+2+4+3+2+8=20, 20×π=20π,

﹣1+2﹣4﹣2+3﹣8=﹣10,

∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π

(3)解:设时间为t秒, 分四种情况讨论: i)当两圆同向右滚动,

由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,

小圆与数轴重合的点所表示的数为:πt, 2πt﹣πt=6π, 2t﹣t=6, t=6,

2πt=12π,πt=6π,

则此时两圆与数轴重合的点所表示的数分别为12π、6π. ii)当两圆同向左滚动,

由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt, 小圆与数轴重合的点所表示的数:﹣πt, ﹣πt+2πt=6π, ﹣t+2t=6, t=6,

﹣2πt=﹣12π,﹣πt=﹣6π,

则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π. iii)当大圆向右滚动,小圆向左滚动时, 同理得:2πt﹣(﹣πt)=6π, 3t=6, t=2,

2πt=4π,﹣πt=﹣2π,

则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π. iiii)当大圆向左滚动,小圆向右滚动时, 同理得:πt﹣(﹣2πt)=6π, t=2,

πt=2π,﹣2πt=﹣4π,

则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π

【解析】【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π, 故答案为:﹣4π;

【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.

4.数轴上有 、 、 三点,分别表示有理数

,动点 从 出发,以每

秒 个单位的速度向右移动,当 点运动到 点时运动停止,设点 移动时间为 秒.

(1)用含 的代数式表示 点对应的数:________;

(2)当 点运动到 点时,点 从 点出发,以每秒 个单位的速度向 点运动, 点到达 点后,再立即以同样的速度返回 点.

①用含 的代数式表示 点在由 到 过程中对应的数:________ ; ②当 t=________ 时,动点 P、 Q到达同一位置(即相遇); ③当PQ=3 时,求 t的值.________ 【答案】(1)(2)2t-58;当

时,t=32 ;当

时,t=

;t=3,29,35,

,

【解析】(1) 点所对应的数为: ( 2 )①

② 点从 运动到 点所花的时间为 秒, 点从 运动到 点所花的时间为 秒 当

时, :

,解之得

时, :

, :

, :

,解之得

16≤t≤39 和39 ≤ t ≤ 46两类分别计算.

【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,

5.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6

(1)收工时,检修小组在A地的哪一边,距A地多远?

(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?

【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km), 答:检修小组在A地东边,距A地19千米

(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3 =65×3=195(升),∵195>180, ∴收工前需要中途加油, 195-180=15(升), 答:应加15升.

【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;

(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.

6.有 、 、 三种盐水,按 与 数量之比为 与 数量之比为

混合,得到浓度为

混合成的盐水浓度为

混合,得到浓度为

的盐水;按

的盐水.如果 、 、 数量之比为

,问盐水 的浓度是多少?

【答案】 解:B盐水浓度: (14%×6-13%×3)÷(4-1) =(0.84-0.39)÷3 =0.45÷3 =15%

A盐水浓度:14%×3-15×2=12%

C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3 =(0.51-0.27)÷3 =0.24÷3 =8%

答:盐水C的浓度为8%。

【解析】【分析】 与按数量之比为2:4混合时,浓度仍为14%, 而这样的混合溶液也相当于A与B按数量之比为2:1混合后再混入(4-1)份B盐水,这样就能求出B盐水的浓度。然后求出A盐水的浓度,再根据混合盐水的浓度计算C盐水的浓度即可。

7.蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需 小时;排光一池水,单开排水管需 小时.现在池内有半池水,如果按进水,排水,进水,排水……的顺序轮流各开 小时.问:多长时间后水池的水刚好排完?(精确到分钟) 【答案】 解: 小时排水比1小时进水多 各开3小时后还有的水量:

再开1小时进水管后的水量:拍完这些水需要:

(小时)=54(分),

共需要:3×2+1+=

(小时)=7小时54分。

答:7小时54分后水池的水刚好排完。

【解析】【分析】进水管每小时进水量为 , 排水管每小时排水量为 , 这样就可以计算出1小时排水比进水多的分率。假设两个水管各开了3小时(实际共6小时),用1小时排水比进水多的分率乘3求出排水量,用原有水量减去排水量即可求出剩下的水量。此时该开进水管了,每小时进水后实际还有剩下的水量加上。然后开排水管,用此时的水量

除以每小时的排水量即可求出剩下的水需要的时间。然后把总时间相加即可求出刚好排完的时间。

8.规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要

小时,而乙、甲轮流做同样的工程只需要

小时,那乙

单独做这个工程需要多少小时?

【答案】 解:1-0.6=0.4(小时),1-0.8=0.2(小时),甲工作2小时相当于乙1小时的工作量,

9.8-5+5÷2=7.3(小时)

答:乙单独做这个工程需要7.3小时。

【解析】【分析】两队交替做工程,两种情况下做到最后剩下的工作量是相同的,两次需要的时间不同,是因为一种情况剩下的工作量是甲做的,另一种情况是剩下的工作量是乙做的,也就是

, 这样求出甲做0.4小时与乙做0.2小时

的工作量相等,这样就可以求出两人工作效率的倍数关系。9.8小时中甲做了5小时,乙做了4.8小时,而甲做的5小时相当于乙2.5小时,所以乙单独做需要4.8+2.5=7.3小时。

9.一项挖土方工程,如果甲队单独做,16天可以完成,乙队单独做要20天能完成.现在两队同时施工,工作效率提高20%.当工程完成 时,突然遇到了地下水,影响了施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程.问整工程要挖多少方土?

【答案】 解:工作效率和:遇到地下水前的天数:

(天),

遇到地下水后工作的天数:10-遇到地下水后的工作效率:47.25÷(

)=1100(方)

(天),

答:整工程要挖1100方土。

【解析】【分析】用原来的工作效率和乘(1+20%)求出提高后的工作效率和,用原来完成的工作量除以工作效率和求出遇到地下水前挖的时间,进而求出遇到地下水后挖的时间。用遇到地下水后的工作量除以工作时间求出后来的工作效率。根据分数除法的意义,用每天少挖的土方数除以前后合做的工作效率的差即可求出整工程挖的土方数。

10.搬运一个仓库的货物,甲需

小时,乙需

小时,丙需

小时.有同样的仓库 和

,甲在 仓库,乙在 仓库同时开始搬运货物,丙开始帮甲搬运,中途又转向帮乙搬运,最后同时搬完两个仓库的货物.丙帮助甲、乙各搬运了几小时? 【答案】 解:甲、乙、丙搬完两个仓库共用了: 丙帮助甲搬运了: 丙帮助乙搬运了:

(小时)。

(小时),

(小时),

答:丙帮助甲搬运了3小时,帮助乙搬运了5小时。

【解析】【分析】整个搬运的过程,就是甲、乙、丙三人同时开始同时结束,共搬运了两个仓库的货物,用工作量2除以三人的工作效率和求出共同完成工作量需要的时间。在这段时间内,甲、乙各自在某一个仓库内搬运,丙则在两个仓库都搬运过。用甲的工作效率乘共同完成的时间即可求出甲完成的工作量,用1减去甲完成的工作量即可求出丙帮甲完成的工作量,用这个工作量除以丙的工作效率即可求出丙帮甲的时间,进而求出丙帮乙的时间即可。

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yule263.com 版权所有 湘ICP备2023023988号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务