您好,欢迎来到二三娱乐。
搜索
您的当前位置:首页一种高介电常数高Qf值的陶瓷材料及其制备方法与应用[发明专利]

一种高介电常数高Qf值的陶瓷材料及其制备方法与应用[发明专利]

来源:二三娱乐
(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 112266245 A(43)申请公布日 2021.01.26

(21)申请号 202011146826.0(22)申请日 2020.10.23

(71)申请人 厦门松元电子有限公司

地址 361022 福建省厦门市集美区锦亭路

1203号(72)发明人 杨和成 张军志 罗昌宸 (74)专利代理机构 厦门智慧呈睿知识产权代理

事务所(普通合伙) 35222

代理人 郭福利(51)Int.Cl.

C04B 35/49(2006.01)C04B 35/622(2006.01)C04B 35/626(2006.01)C04B 35/638(2006.01)C04B 35/64(2006.01)

权利要求书1页 说明书7页

C04B 35/632(2006.01)C04B 35/634(2006.01)H01B 3/12(2006.01)

CN 112266245 A(54)发明名称

一种高介电常数高Qf值的陶瓷材料及其制备方法与应用(57)摘要

本发明提供一种高介电常数高Qf值的陶瓷材料及其制备方法,涉及信息功能材料领域。该陶瓷材料包括主晶相与改性添加物。主晶相包括主材和辅材。主晶相的化学通式为Ba4+2xLn4+

其中0y<0.05;其中Ba4+2xLn4+8xTi22‑7xO54为主材的化学通式,Ln选自La、Y、Sm、Dy、Ho、Er和Nd中的一种或几种。Zr0.8Sn0.2TiO4为辅材的化学式。主晶相在

改性添陶瓷材料中的质量分数为99~99.5wt%,

加物在陶瓷材料中的质量分数为0.5~1wt%。采用固相法分别合成主材以及辅材,制备出均匀的粉末态陶瓷材料,该粉末态的陶瓷材料烧结后得到具有高介电常数高Qf值的陶瓷材料,该材料能满足微波器件的高介电常数高Qf值要求。

CN 112266245 A

权 利 要 求 书

1/1页

1.一种高介电常数高Qf值的陶瓷材料,包括主晶相和改性添加物,所述主晶相包括主材和辅材,其特征在于:所述主晶相的化学通式为Ba4+2xLn4+8xTi22-7xO54·yZr0.8Sn0.2TiO4,其中02.根据权利要求1所述的高介电常数高Qf值的陶瓷材料,其特征在于:x=0.10且y=0.03。

3.根据权利要求1所述的高介电常数高Qf值的陶瓷材料,其特征在于:所述改性添加物选自Sb2O3、Bi2O3、MnCO3、MnO2、ZnO和TiO2中的一种或一种以上混合物。

4.根据权利要求3所述的高介电常数高Qf值的陶瓷材料,其特征在于,各个所述改性添加物在所述陶瓷材料中所占的质量分数范围分别是:Sb2O3为0~0.3%,Bi2O3为0~0.5%,MnCO3为0~0.6%,ZnO为0~0.5%,TiO2为0~0.6%。

5.一种如权利要求1~4任意一项所述的高介电常数高Qf值的陶瓷材料的制备方法,其特征在于,包括以下步骤:

S1,固相法合成主材Ba4+2xLn4+8xTi22-7xO54:将碳酸钡、稀土氧化物Ln2O3和二氧化钛按配比混合,并磨成均匀粉粒,然后在空气气氛中1130℃~1250℃的温度范围煅烧2~4小时,得到Ba4+2xLn4+8xTi22-7xO54;

S2,固相法合成辅材Zr0.8Sn0.2TiO4:将二氧化锆、氧化锡及二氧化钛按0.8:0.2:1的摩尔配比混合,并磨成均匀粉粒,再在空气气氛中1050℃~1130℃的温度范围煅烧1~2小时,得到Zr0.8Sn0.2TiO4;

S3,将步骤S1获得的Ba4+2xLn4+8xTi22-7xO54、步骤S2获得的Zr0.8Sn0.2TiO4以及所述改性添加物按配方要求混合,并磨成均匀粉粒,获得粉末态的所述高介电常数高Qf值的陶瓷材料。

6.根据权利要求5所述的制备方法,其特征在于,步骤S1、S2和S3中,所述磨成均匀粉粒,具体为将固体物料置入球磨机中,加水进行湿法球磨,通过控制球磨强度和球磨时间来控制球磨后的粉粒的D50粒径为0.4-1.0um,球磨后进行干燥处理。

7.根据权利要求5所述的制备方法,其特征在于,还包括以下步骤:S4,在步骤S3得到的粉末态的所述高介电常数高Qf值的陶瓷材料中加入粘合剂、增塑剂和分散剂,球磨1~2小时,获得浆料,再干燥后获得粉料,将粉料压制成生坯;

S5,排胶:将生坯加热至500℃~650℃,保温16~32小时,得到坯体;S6,烧结:排胶后的坯体,在空气气氛中,1250~1350℃内保温3~5小时;S7,退火:烧结后,在900℃~1000℃范围内,保温2~3小时,得到成型的高介电常数高Qf值的陶瓷材料。

8.根据权利要求7所述的制备方法,其特征在于,步骤S4中,所述粘合剂为聚乙烯醇,所述增塑剂为聚乙二醇,所述分散剂为羧酸铵盐。

9.根据权利要求7所述的制备方法,其特征在于,步骤S5的排胶过程,控制升温速度小于10℃/小时;步骤S6的烧结过程,控制升温速度为130℃~200℃/小时。

10.一种如权利要求1~4任意一项所述高介电常数高Qf值的陶瓷材料的应用,其特征在于,应用于制作微波器件,所述微波器件包括叠层天线、介质天线、滤波器和谐振器。

2

CN 112266245 A

说 明 书

1/7页

一种高介电常数高Qf值的陶瓷材料及其制备方法与应用

技术领域

[0001]本发明涉及信息功能材料领域,且特别涉及一种具有高介电常数高Qf值的陶瓷材料及其制备方法与应用。

背景技术

[0002]微波介质陶瓷材料是近年来迅速发展起来的一类新型功能陶瓷材料。它是介质谐振器、滤波器、振荡器、双工器、天线、介质基板等在内的新型微波电路和器件的核心基础材料,在现代微波通信和卫星导航系统和设备中有广泛的应用。随着移动通信和雷达技术的进步,微波电子元器件逐渐向高频方向发展,故具备高介电常数、高品质因数、近零谐振频率温度系数的微波介质陶瓷材料越来越成为研究热点,兼具这三种性质的微波介质陶瓷材料较为短缺。

发明内容

[0003]本发明的目的在于提供一种具有高介电常数高Qf值的陶瓷材料及其制备方法,以满足微波器件对高介电常数、高品质因数、近零谐振频率温度系数的微波介质陶瓷材料的需求。本发明采用以下方案来实现目的。

[0004]一种高介电常数高Qf值的陶瓷材料,包括主晶相和改性添加物,所述主晶相包括主材和辅材。所述主晶相的化学通式为Ba4+2xLn4+8xTi22-7xO54·yZr0.8Sn0.2TiO4,其中0[0005]进一步地,主晶相中,取x=0.10且y=0.03。[0006]进一步地,所述改性添加物选自Sb2O3、Bi2O3、MnCO3、MnO2、ZnO和TiO2中的一种或一种以上混合物。

[0007]进一步地,各个所述改性添加物在所述陶瓷材料中所占的质量分数范围分别是:Sb2O3为0~0.3%,Bi2O3为0~0.5%,MnCO3为0~0.6%,ZnO为0~0.5%,TiO2为0~0.6%。[0008]本发明的高介电常数高Qf值的陶瓷材料的制备方法包括以下步骤:[0009]S1,固相法合成主材Ba4+2xLn4+8xTi22-7xO54:将碳酸钡、稀土氧化物Ln2O3和二氧化钛按配比混合,并磨成均匀粉粒,然后在空气气氛中1130℃~1250℃的温度范围煅烧2~4小时,得到Ba4+2xLn4+8xTi22-7xO54;[0010]S2,固相法合成辅材Zr0.8Sn0.2TiO4:将二氧化锆、氧化锡及二氧化钛按0.8:0.2:1的摩尔配比混合,并磨成均匀粉粒,再在空气气氛中1050℃~1130℃的温度范围煅烧1~2小时,得到Zr0.8Sn0.2TiO4;[0011]S3,将步骤S1获得的Ba4+2xLn4+8xTi22-7xO54、步骤S2获得的Zr0.8Sn0.2TiO4以及所述改性添加物按配方要求混合,并磨成均匀粉粒,获得粉末态的所述高介电常数高Qf值的陶瓷

3

CN 112266245 A

说 明 书

2/7页

材料。

进一步地,步骤S1、S2和S3中,所述磨成均匀粉粒,具体为将固体物料置入球磨机

中,加水进行湿法球磨,通过控制球磨强度和球磨时间来控制球磨后的粉粒的D50粒径为0.4-1.0um,球磨后进行干燥处理。[0013]进一步地,该陶瓷材料的制备方法还包括以下步骤:[0014]S4,在步骤S3得到的粉末态的所述高介电常数高Qf值的陶瓷材料中加入粘合剂、增塑剂和分散剂,球磨1~2小时,获得浆料,再干燥后获得粉料,将粉料压制成生坯;[0015]S5,排胶:将生坯加热至500℃~650℃,保温16~32小时,得到坯体;[0016]S6,烧结:排胶后的坯体,在空气气氛中,1250~1350℃内保温3~5小时;[0017]S7,退火:烧结后,在900℃~1000℃范围内,保温2~3小时,得到成型的高介电常数高Qf值的陶瓷材料。[0018]进一步地,步骤S4中,所述粘合剂为聚乙烯醇,所述增塑剂为聚乙二醇,所述分散剂为羧酸铵盐。

[0019]进一步地,步骤S5的排胶过程,控制升温速度小于10℃/小时;步骤S6的烧结过程,控制升温速度为130℃~200℃/小时。

[0020]根据上述制备方法得到成型的高介电常数高Qf值的陶瓷材料,其室温介电常数介于80~95,温度系数τf(-40~85℃):±20ppm/℃,Qf值≥10000GHz。[0021]本发明的高介电常数高Qf值的陶瓷材料,可应用于制作微波器件,所述微波器件包括叠层天线、介质天线、滤波器和谐振器等。[0022]本发明主材Ba4+2xLn4+8xTi22-7xO54,取x=0则其化学式为Ba4Ln4Ti22O54。Ba4Ln4Ti22O54陶瓷在微波频段内具有优异的介电性能,其介电常数约为70-100,但其Qf值只有约4500,影响了它在高频段的实际应用。Zr0.8Sn0.2TiO4具有较大Qf值,可达到50000,接近零的温度系数τf,室温下,其介电常数ε为40。将两者按一定比例进行复合可获取介电常数ε在80-95,Qf值≥10000GHz,温度系数τf在±20ppm/℃以内的微波材料。[0023]本发明的有益效果是:本发明的陶瓷材料是一种无铅环保型材料,其是采用固相法分别合成主材Ba4+2xLn4+8xTi22-7xO54以及辅材Zr0.8Sn0.2TiO4,制备出均匀的粉末态陶瓷材料。该粉末态的陶瓷材料烧结后得到具有高介电常数高Qf值的陶瓷材料。本发明的陶瓷材料可以通过调整原材料的配比形成较高的室温介电常数介于80~95之间,Qf值≥10000GHz,温度系数τf(-40~85℃):±20ppm/℃的微波材料,满足微波器件的微波性能要求。

具体实施方式

[0024]为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

[0025]一种高介电常数高Qf值的陶瓷材料,包括主晶相和改性添加物,所述主晶相包括主材和辅材。所述主晶相的化学通式为Ba4+2xLn4+8xTi22-7xO54·yZr0.8Sn0.2TiO4,其中04

[0012]

CN 112266245 A

说 明 书

3/7页

Er和Nd中的一种或几种。Zr0.8Sn0.2TiO4为所述辅材的化学式。所述主晶相在所述陶瓷材料中的质量分数为99~99.5wt%,所述改性添加物在所述陶瓷材料中的质量分数为0.5~1wt%。

[0026]进一步地,主晶相中,取x=0.10且y=0.03,按此比例烧结后的陶瓷材料的介电常数更高。

[0027]进一步地,所述改性添加物选自Sb2O3、Bi2O3、MnCO3、MnO2、ZnO和TiO2中的一种或一种以上混合物。改性添加物能调节陶瓷材料在烧结时晶粒的生长,以形成均匀的细晶,保证陶瓷材料各部分微波性能的均一性。[0028]进一步地,各个所述改性添加物在所述陶瓷材料中所占的质量分数范围分别是:Sb2O3为0~0.3%,Bi2O3为0~0.5%,MnCO3为0~0.6%,ZnO为0~0.5%,TiO2为0~0.6%。[0029]本发明的高介电常数高Qf值的陶瓷材料的制备方法包括以下步骤:[0030]①固相法合成主材Ba4+2xLn4+8xTi22-7xO54:按化合物中元素的比例,称量相应质量的高纯碳酸钡、稀土氧化物Ln2O3和二氧化钛,置于球磨机中,按质量比为固体物料:水=1:(1.0~2.0)的比例加入水进行湿法球磨。球磨成均匀的粉粒后,粒度D50可以是0.4-1.0um,接着用喷雾干燥塔或其他方法进行干燥;然后在空气炉中1130℃~1250℃的温度范围煅烧2~4小时;最终得到主材Ba4+2xLn4+8xTi22-7xO54粉末。[0031]②固相法合成辅材Zr0.8Sn0.2TiO4:将二氧化锆、氧化锡及二氧化钛按0.8:0.2:1的摩尔配比混合,置于球磨机中,按质量比为固体物料:水=1:(1.0~2.0)的比例加入水进行球磨成粉粒,粒度D50可以是0.4-1.0um,接着用喷雾干燥塔或其他方法进行干燥,再在空气炉中1050℃~1130℃的温度范围煅烧1~2小时,得到Zr0.8Sn0.2TiO4粉末。[0032]③制备配方粉末:将步骤①获得的Ba4+2xLn4+8xTi22-7xO54、步骤②获得的Zr0.8Sn0.2TiO4以及所述改性添加物Sb2O3、Bi2O3、MnCO3、MnO2、ZnO和TiO2中的一种或一种以上混合物,按陶瓷材料的配方要求混合,置于球磨机中,按质量比为固体物料:水=1:(0.6~1.0)的比例加入水进行湿法球磨或砂磨,使球磨或砂磨后的粉体用激光粒度仪测试粒度D50在0.4-1.0um。球磨或砂磨完毕后用喷雾干燥塔或其他方法进行干燥,得到本发明粉末态的高介电常数高Qf值的陶瓷材料。

[0033]以上球磨或砂磨过程添加的水优选用去离子水,防止水中其他金属离子混入材料,影响材料的微波性能。[0034]进一步地,本发明的高介电常数高Qf值的陶瓷材料的制备方法还包括以下进一步将粉末态的高介电常数高Qf值陶瓷材料制作成型器件的步骤:

[0035]④在在步骤③得到的粉末态的高介电常数高Qf值的陶瓷材料中,加入适当的粘合剂、增塑剂、分散剂等,用氧化锆球为磨介在球磨罐中球磨1~2小时,获得浆料,再进行离心喷雾干燥,获得流动性良好的球形颗粒粉料。所述粘合剂可选用聚乙烯醇,所述增塑剂可选用聚乙二醇,所述分散剂可选用羧酸铵盐。[0036]⑤将球形颗粒粉料,压制成生坯器件。[0037]⑥排胶:将生坯器件置于500℃~650℃的温度范围内,保温16~32小时,排除生坯片中的有机物,得到坯体,整个排胶过程的升温速度优选小于10℃/小时。[0038]⑦烧结:将排胶好的坯体,在空气炉中进行烧结,以130℃~200℃/小时的升温速度升温到1250~1350℃,保温时间为3~5小时。烧结能使陶瓷坯体中的粉粒晶界移动,气孔

5

CN 112266245 A

说 明 书

4/7页

逐步排除,坯体收缩成为具有一定强度的致密陶瓷体。[0039]⑧退火处理:高温烧结后,炉温降低至900℃~1000℃,保温2~3小时,得到成型的高介电常数高Qf值的陶瓷材料。退火可以减小坯体内部应力,细化晶粒,弥合微裂纹,改善材料的组织结构,提高陶瓷的力学性能。[0040]⑨器件测试:采用安捷伦网分,在频率2-5GHz下进行微波性能测试。[0041]根据测试结果:上述得到成型的高介电常数高Qf值的陶瓷材料,其室温介电常数介于80~95,温度系数τf(-40~85℃):±20ppm/℃,Qf值≥10000GHz,获得了高介电常数陶瓷材料。

[0042]本发明的高介电常数高Qf值的陶瓷材料,可应用于制作微波器件,所述微波器件包括叠层天线、介质天线、滤波器和谐振器等。[0043]实施例

[0044]本实施例提供一种高介电常数高Qf值的陶瓷材料及其制备方法,本发明的方案不局限于本实施例。[0045](1)按照主材Ba4+2xLn4+8xTi22-7xO54的组成,其中0[0047]

[0048]

[0049]

(2)按照Zr0.8Sn0.2TiO4的组成:将二氧化锆、氧化锡及二氧化钛按0.8:0.2:1的摩尔配比混合,置于球磨机中,按质量比为固体物料:去离子水=1:1.5的比例加入去离子水进行湿法球磨,球磨均匀后用喷雾干燥塔进行干燥,然后在空气炉中1100℃的温度煅烧1.5小时。[0050](3)根据主晶相化学式Ba4+2xLn4+8xTi22-7xO54·yZr0.8Sn0.2TiO4,其中06

CN 112266245 A

说 明 书

5/7页

制成圆柱型生坯圆片。然后设定温度曲线,先置于600℃中保温24小时以进行排胶,整个排胶过程的升温速度为10℃/小时;再以200℃/小时的升温速度升温至1320~1420℃保温3小时进行烧结;高温烧结后,在1000℃中保温2.5小时,得到成型的高介电常数高Qf值的陶瓷材料圆片。[0051]表2 主晶相试样化学组成

[0052]

[0053]

表3 高介电常数高Qf值的陶瓷材料试样化学组成

[0054]

[0055]

采用安捷伦网分,在频率2-5GHz下对成型的高介电常数高Qf值的陶瓷材料进行微波性能测试,测试结果列于表4中。表4的1~18号试样取自表3中的1~18号试样,且相同编

7

CN 112266245 A

说 明 书

6/7页

号一一对应。[0056]表4 高介电常数高Qf值的陶瓷材料试样烧结制成圆片各项电性能测试结果

[0057]

[0058]

从表4可以看出,经过上述过程制成的陶瓷材料,可以在1250℃~1350℃的温度范围内烧结成瓷。通过调整材料合成的配比可形成室温介电常数介于80~95,温度系数τf(-40~85℃):±20ppm/℃,Qf值≥10000GHz,微波性能参数连续可调的系统陶瓷材料,可满足高频微波器件的高介电常数和高Qf值的应用需求。

[0059]

8

CN 112266245 A[0060]

说 明 书

7/7页

以上所描述的实施例是本发明的一部分实施例,而不是全部的实施例。本发明的

实施例的详细描述并非旨在限制要求保护的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明要求保护的范围。

9

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- yule263.com 版权所有 湘ICP备2023023988号-1

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务