ProcIMechEPartC:
JMechanicalEngineeringScience2016,Vol.230(2)189–205!IMechE2015
Reprintsandpermissions:
sagepub.co.uk/journalsPermissions.navDOI:10.1177/0954406215572435pic.sagepub.com
Designandperformanceanalysisofacircular-arcgearpumpoperatingathighpressureandhighspeed
YangZhou,ShuanghuiHaoandMinghuiHao
Abstract
Thispaperpresentsahigh-pressureandhigh-speedgearpumpforaerospaceapplicationandintroducesacircular-arctoothprofilethathasnotrappingfeatureandwhosegearsareincontinuousone-pointcontactintheplaneofrotation.Basicdimensionsaredeterminedandperformanceparametersofthegearpumpareobtainedbystructuraldesignofthegearpump.Theperformanceparametersarediscussedfordifferenttoothprofiles.Adisctoolandhobaredesignedtogeneratethecircular-arctoothprofile.Acomputer-aideddesign(CAD)systemforthedesignofthecircular-arcgearpumpisdevelopedwithfeaturesoftoothprofiledesign,tooldesign,andnumericalcontrol.ThetestgearswereprocessedtoverifythecorrectnessofCADsystem.Astudyoftheoutletpressureofthecircular-arcgearpumprevealsthatthedevelopedhigh-pressureandhigh-speedgearpumphaslowoutletpressurefluctuations.
Keywords
High-pressureandhigh-speedgearpump,circular-arctoothprofile,performanceparameters,CAD,pressurefluctuations
Datereceived:15September2014;accepted:12January2015
Introduction
Pumpsystemsarepopularmechanicalsystemsforaerospacehydraulicsystems,operatingsystems,andaircraftenginefuelsystems.1Thepistonpumpandgearpumparewidelyusedinaerospaceapplications.Thepistonpumpcanworkinawiderangeofworkpressuresandathighrotationalspeeds.However,apistonpumpexhibitspoorstabilityandissensitivetooilpollutionandeasilybecomesstuckwhenrunathighspeed.Incontrast,agearpumpissimpleandinsensitivetooilpollution.Thedrawbacksofthegearpumprelatetolowrotationalspeedsandlowpressure;aninvolutegearpumpisoftenfoundtohavetrappedoilandoutletflowripples;2–6thebend-ingstrengthofinvolutegearislow.Inresponse,acircular-arctoothprofile7–10whosegearsareincon-tinuousone-pointcontactintheplaneofrotationhasbeendeveloped.Thecitedstudieshavefocusedonthetoothprofiledesignandpressurefluctuationswhenthecirculararcisrunatlowrotationalspeed.Asaerospacestabilityandminiaturizationareurgentrequirements,thedevelopmentofahigh-speedminia-turizedhigh-pressuregearpumpwillbeofimportantscientificsignificanceandapplicationvalue.Thefol-lowingneedtobeconsideredwhenrunningagearpumpathighspeedandhighpressure.(a)Theleakingofagearpumpincreasesunderhigherpressureandathigherrotationalspeeds.11–14Thetraditionalmodelof
agearpumpisnolongerapplicableundersuchcon-ditions.(b)Ariseinthejournalbearingtemperatureundersuchconditionsaffectsthehydraulicoilviscos-ityandrotorstability.15(c)Thestabilityofgearwhenthepumpisrunathigh-speedandhighpressure.16,17(d)Thesystemsealshavechangedundersuchcondi-tions.18–22(e)Processingandmanufacturingismadedifficultbyminiaturizationofthepump.3,23,24Themainpurposeofthisstudyistoprovideabasemodelofhigh-pressureandhighspeedgearpumpforaddressingtheaboveproblems.Acircular-arctoothprofileisintroducedandtheflowrate,radialforce,axialforce,andtorquearestudied.Acomputer-aideddesign(CAD)systemforthedesignofagearpumpisdeveloped,allowingdesignofthetoothprofile,designofthetool,andnumericalcontrolofcircular-arcgearpump.TheinternalflowfieldofthisgearpumpisstudiedemployingFluentsoftware.Thebasemodelprovidedtakesintoaccountthemainphenomenarelatingtoleakages,temperaturerises,androtor
SchoolofMechanicalandElectricalEngineering,HarbinInstituteofTechnology,Harbin,P.R.China
Correspondingauthor:
MinghuiHAO,SchoolofMechanicalandElectricalEngineering,HarbinInstituteofTechnologyNo.92,WestDa-zhiStreet,Harbin150001,P.R.China.
Email:hao_minghui@163.com
Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016
190
stabilityatrotationalspeedsoftensofthousandsofrevolutionsperminuteandpressuresabove25MPa.
ProcIMechEPartC:JMechanicalEngineeringScience230(2)
TheequationfortheinvoluteBCisx0¼uÁRbÁcosðuÀ0ÞÀRbÁsinðuÀ0Þy0¼uÁRbÁsinðuÀ0ÞþRbÁcosðuÀ0Þ
'
ð2Þ
Designofcircular-arctoothprofile
ThegearpumpstudiedisdepictedinFigure1.Itisanexternalgearpumpwithtwingears(drivinggearanddrivengear),journalbearing,oilseal,circlip,cover,andbody.Figure2showsthetoothprofile.Thetoothprofileisgeneratedbyacirculararc(ABandCD)andinvolute(BC).TheequationforthecirculararcABisgivenby
x0¼rÁcosðukÞy0¼rÁsinðukÞþR
'
ð1Þ
whereudenotesthefunctionvariablesofinvoluteBCandRbisradiusofbasecircle.Theangle0isgener-atedbytheyaxis,involuteandcoordinateoriginO.TheCDequationinthe(O,x,y)coordinatesystemisx0¼ÀrÁcosðunÞþRÁsinð’Þy0¼ÀrÁsinðunÞþRÁcosð’Þ
'
ð3Þ
whereukdenotesthefunctionvariablesofcirculararcAB,Ristheradiusofpitchcircle,andristheradiusofcirculararc.
where’¼=Z,undenotesthefunctionvariablesofcirculararcCD,Risradiusofthepitchcircle,Zistheteethnumberandristheradiusofcirculararc.Sincethetoothprofileissymmetricalwithyaxis,thewholetoothprofileisobtainedbyequations(1)to(3).Figure3showsthetoothprofilewiththenumberofteethZ¼7teeth,normalmodulusofmn¼2mm,ref-erencecirclenormalpressureangle¼28,andfacewidthB¼10mm.
PointsBandCarejunctionsofinvoluteandcir-culararc.Thus,thecoordinateandfirst-orderderiva-tiveareequalatBpointforinvoluteandcirculararc.Similarly,thecoordinateandfirst-orderderivativeareequalatpointCforinvoluteandcirculararc.ThecoordinateofpointBatcircular-arcisðx01,y01Þ,andthecoordinateofpointBatinvoluteisðx02,y02Þ.ThecontinuityrequirementsatpointBare&
x01¼x02y01¼y02
ð4Þ
Figure1.Structureofthecircular-arcgearpump.
y001y002
¼x001x002
ð5Þ
Figure2.Coordinatesystemsofthecircular-arctoothprofile.
Figure3.Circular-arctoothprofile.
Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016
Zhouetal.
Likewise,thecoordinateofpointCatinvoluteisðx03,y03Þ,andthecoordinateofpointCatcirculararcisðx04,y04Þ.ThecontinuityrequirementsatpointCare&
x03¼x04y03¼y04
ð6Þ
191
whereðx0,y0,z0ÞiscoordinateoftoothprofileinthecoordinatesystemS0ðOÀx,y,zÞ.LookingalongtheZ-axis,ispositivewhentherotationisclockwise.Likewise,isnegativewhentherotationisanticlockwise.
Thehelicalsurfaceequationisobtainedfromequa-tions(1)–(3)and(9)9
x¼x0cosðÞÀy0sinðÞ=y¼x0sinðÞþy0cosðÞ
;
z¼ÆpÁ
y003y004
¼x003x004
ð7Þ
ð10Þ
Thecontinuityrequirementsofthetoothprofileareobtainedbyequations(4)to(7)8
<0¼tanð0ÞÀ0þ2Zr¼Rbð0þ0Àtanð0ÞÞ:
u¼0
ð8Þ
where0isthepressureangleatpithcircular,Rbistheradiusofbasecircle,uisthecirculararcparametervalueatpointB,andZistheteethnumber.
Thetransversecontactratioofacircular-arcgearpumpis0.5becausethereisonlyonepairofteethincontactduringtheengagementcycle.Thehelicalcircu-lar-arcgearpumpisdiscussedinthispaper.Thehelicalsurfaceisobtainedbycoordinatetransformationfromtransverse,asisshowninFigure4.ThecoordinatesystemS0ðOÀx,y,zÞisfixedcoordinatesystems.ThecoordinatesystemS1ðO1Àx1,y1,z1ÞisobtainedbythecoordinatesystemsS0ðOÀx,y,zÞrotateandmovealongzðz1Þaxis,andtheangleofrotationis.Thehelicalsurfaceequationisobtained232xcosðÞ4y5¼4sinðÞz0
32323
ÀsinðÞ0x00cosðÞ054y05þ40501Æpz0
ð9Þ
where‘‘À’’correspondstothedrivinggearand‘‘þ’’
correspondstothedrivengear,isaparametervari-H
able.pistheparameterofthehelicalsurfacep¼2,andHislead.ThegearpumpwithtwingearsofZ¼7teeth,normalmodulusofmn¼2mm,referencecirclenormalpressureangleof¼28,andfacewidthofB¼10mmisdiscussedinthispaper.
Theperformanceparametersofgearpump
Theoreticaldisplacementandflowrate
Thedisplacementisobtainedbydifferentialalongaxisdirection(z-axis)ofgear.
22
dV¼ðR2eÀRÀfÞdz
ð11Þ
wherefisthedistancebetweenthemeshingpointandpitchpoint,Reistipradius,andRisradiusofpitchcircle.
mnrRbmn2
þÁV¼2RrÁ
sinðÞpsinðÞ
ð12Þ
1Rb2mn3ÀÁ3psinðÞwhereVisthedisplacementperradian,pisthepar-H
ameterofthehelicalsurface¼2,Histhelead,isÀmnpÁZ
thehelixangle¼arcsinH,andmnisthenormalmodule.
ThefacewidthisobtainedbyB¼
mnH
¼sinðÞZ
ð13Þ
Theequation(12)isrewrittenasfollowB3rRbB2R2
Àb22p12p22
mnRbBRbB
þV¼
2cosðÞ6Z2V¼2RrBþ
3
m2nZBV¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi22224ð1þtan2ðÞÞÁB2Àm2nÁBÀmn
ð14Þð15Þ
þ
Figure4.Coordinatetransformationfromtransversetothe
helicalsurface.
23m2nB
224ðð1þtan2ðÞÞÁB2Àm2nÞ
ð16Þ
Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016
192ProcIMechEPartC:JMechanicalEngineeringScience230(2)
Figure5.Flowrateversusdifferenttoothprofileparameters:(a)flowrateversusnumberofteeth,(b)flowrateversusmodulusand(c)flowrateversusfacewidth.
TheflowrateisobtainedbyQðL=minÞ¼
2VÁn106ð17Þ
Theinfluenceofnumberofteethonflowrate.ThenumberofteethZisvariable,thefacewidthB¼10mm,thepressureangle¼28andthemodulusmn¼2inthissection.Equation(17)canbesimplifiedQðzÞ¼f1zQZþf2zQwheref1zQ¼
2Â106
f3mQBnqffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffi¼.,f2zQf2mQ
f2
2
32mQ
À2Ám2n
B2
À2m2n
m2n
wherenistherotationalspeed,andtherotational
speedisn¼10,000rpminthispaper.Theflowrateanddisplacementareconstantwhenthetoothprofileparametersaredefined.Asmentionedearlier,thetoothprofileisdeterminedbythetoothprofilepar-ameters.Here,letusdiscusstherelationshipbetweenthetoothparametersandflowrate.
Theinfluenceofmodulusonflowrate.Themodulusmnisvariable,thefacewidthB¼10mm,thepressureangle¼28andthenumberofteethZ¼7inthissection.Equation(17)canbesimplifiedf1mQf3mQ
QðmnÞ¼qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiþf2mQ
f2mQB22À2À2Ámm22Ànm2n
n
2
3
ð19Þ
À
Theinfluenceoffacewidthonflowrate.ThefacewidthB
isvariable,themodulusmn¼2,thepressureangle¼28andthenumberofteethZ¼7inthissection.Equation(17)canbesimplifiedf1BQðBÞ
QðBÞ¼qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif2BQðBÞfðBÞfðBÞ
À3BQÁ1À4BQ
B2B4B2þf5BQðBÞÀ
f3BQðBÞ
B3f2BQðBÞBð18Þ
ð20Þ
BZn
,f2mQ¼ð1þtan2ðÞÞB2,f3mQ¼wheref1mQ¼2Â10633
Bn
.1:2Â107Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016
Zhouetal.
wheref1BQðBÞ¼2nÂ106,f2BQð2B3Þ¼1þtan2ðÞ,
mnn2
f3BQðBÞ¼f4BQðBÞ¼m2n,f5BQ¼1:2Â107.
Therelationshipbetweenthetoothprofileparam-etersandflowrateisobtainedbyequations(18)to(20),asisshowninFigure5(a)to(c).Theflowrateincreasesnonlinearlywiththemodulusandfacewidth.However,theflowrateincreaseslinearlywithnumberofteeth.
m22Zn
193
respectively,thefirstderivativesofx0andy0.Thetorqueisobtainedbyequation(14)
ZZpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZZ
^ÁdsT¼ðxeyÀyexÞÁpx2þy2ÁdFt¼ð23Þ
Theinfluenceofmodulusontorque.Themodulusmnisvariable,thefacewidthB¼10mm,thepressureangle
¼28andthenumberofteethZ¼7inthissection.Equation(23)canbesimplified
f1mTf3mT
TðmnÞ¼qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiþf2mT
2f2mTB22Á22ÀÀÀm22nmmn
n
Torqueandradialforce
Mðx,y,zÞisapointonthetoothprofileinthe
ðOÀx,y,zÞcoordinatesystem,asshowninFigure6.Theradialforce,tangentialforceandaxialforcecausedbyliquidoilare8>yxffi>ffieyÁp^ÁdsdFr¼pffiffiffiffiffiffiffiffiffiexþpffiffiffiffiffiffiffiffiffi>>22xþyx2þy2><
ð21Þyxffipffiffiffiffiffiffiffiffiffipffiffiffiffiffiffiffiffiffiffi>^ee¼ÀÁpÁdsdFtyx>>x2þy2x2þy2>>:
^Áds8dFz¼ez0Áp
nx¼pðx0sinðÞþy00cosðÞÞ>>>>00>n¼ÀpðxcosðÞÀyy>00sinðÞÞ>>>00>> ex¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið22Þ22nxþn2>yþnz>>ny>>ey¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi>22>nxþn2>yþnz>>nz>:ez¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi222 nxþnyþnz ð24Þ ÁpBZ wheref¼1mT4000,ÁpB32f3mT¼24000.3 f2mT¼ð1þtan2ðÞÞB2, Theinfluenceofnumberofteethontorque.ThenumberofteethZisvariable,thefacewidthB¼10mm,the pressureangle¼28andthemodulusmn¼2inthissection.Equation(23)canbesimplifiedasTðzÞ¼f1zTZþf2zTwheref1zT¼ ÁpBf3mTqffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffi,f2zT¼f2mTf2 2mTÀ2Ám2n B À2m2n m2n 3 ð25Þ 4000 À2 ^ispressure.Itisrelatedtothesizeoftheworkwherep areashowninFigure7.Thepressuredistributiononthegears,whichvarieswiththerotationangle,iscom-putedbyarithmeticdsistheinfinitesimalÀprocessing.ÁareaonÁgear.nx,ny,nzisnormalvectorandÀ ex,ey,ezistheunitnormalvector.x00andy00are, Theinfluenceoffacewidthonflowrate.ThefacewidthBisvariable,themodulusmn¼2,thepressureangle ¼28,andthenumberofteethZ¼7inthissection.Equation(23)canbesimplifiedf1BTðBÞ TðBÞ¼qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif2BTðBÞðBÞðBÞ Á1Àf4BTÀf3BT B2B4B2þf5BTðBÞ f2BTðBÞBð26Þ À f3BTðBÞB3Figure6.3Dmodelofgear.Figure7.Pressuredistribution. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 194 wheref1BTðBÞ¼ m2n1þtan2ðÞ2 ProcIMechEPartC:JMechanicalEngineeringScience230(2) ÁpÁm2nZ4000 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif2BTðBÞ¼1,f3BTðBÞ¼2 1þtanðÞ Áp2m2 n f4BTðBÞ¼2m2n,f5BTðBÞ¼24000Áð1þtan2ðÞÞ.Therelationshipbetweenthetoothprofileparam-etersandtorqueisobtainedbyequations(24)to (26),asisshowninFigure8(a)to(c).Thetorqueincreasesnonlinearlywiththemodulusandfacewidth.Thetorqueincreaseslinearlywithnumberofteeth. Theradialforcecausedbyliquidisxy ^ÁdsdFr¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiexþpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieyÁp 2222xþyxþy ! from0to2Z.Thetransversetoothprofilecoordinateswithdifferent’are ! ! !\"0xcosð’ÞÀsinð’Þx0 ¼ð28Þ\"0y0sinð’Þcosð’Þy whereðx0,y0Þistheinitialtransversecoordinatewithvariable’¼0. Thetoothprofilecoordinateinhelicalsurfacecoordinatesystemis& \"0cosðÞÀy\"0sinðÞx¼x ð29Þ \"0sinðÞþy\"0cosðÞy¼xTheunitnormalvectoris qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi8 0022 00:ey¼Àpðx22\"0cosðÞÀy\"0sinðÞÞ=n2xþnyþnz ð30Þ ð27Þ Thehelicalgearisdiscussedinthispaper.The radialforcesvarywithrotationofrotor.Thevariable’hasbeenintroduced,andtherangeofvariable’is Figure8.Torqueversusdifferenttoothprofileparameters:(a)torqueversusnumberofteeth,(b)torqueversusmodulus,and(c)torqueversusfacewidth. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 Zhouetal. Theradialforceoftheinfinitesimalareaonthex-axisandy-axisis 8RRx pffiffiffiffiffiffiffiffiffiffieÁpds^ 195 obtainedfromequations(32)and(33).& Fx¼FrxþFNx Fy¼FryÇFNy ð34Þð35Þ ð31Þ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2Fr¼F2xþFy Theradialforceinthex-axisandy-axisis obtainedby 8RRx0y00Àx00y0 :Fry¼pÁp^\"0sinðÞþy\"0cosðÞÞdsðxx2þy20 0 ð32Þ Thenormalforcebetweenmeshinggearsis8T FNy¼FNsinð1Þ ð33Þ wheretheangleis1,1¼arccosðRb=RÞ.Rbisbasecircle,andRispitchcircle.Theradialforceis where‘‘À’’correspondstothedrivinggearand‘‘þ’’correspondstothedrivengear.Itishardtoobtainradialforcebytheanalyticalmethodsbecausepres-^andangle’isvariables.Thus,theradialforcesurep canbeobtainedbynumericalmethods.Theangle’isgivenacertainvalueinthispaper,andthentheradialforcecanbeobtainedbyequations(32),(34)and(35).Theradialforceofthedrivengearisthemaximumradialforce.Figure9(a)to(c)showstherelationshipbetweentoothprofileparametersandthemaximumradialforce(theradialforceofthedrivengear).Theresultsshowthattheradialforceincreasesnonlinearlywiththemodulus,numberofteeth,andfacewidth.Figure10showstheperiodicvariationintheradialforcedistributiononthegears.Gearshavebasic Figure9.Radialforceversusdifferenttoothprofileparameters:(a)radialforceversusnumberofteeth,(b)radialforceversusmodulusand(c)radialforceversusfacewidth. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 196ProcIMechEPartC:JMechanicalEngineeringScience230(2) ÁpBf1mF qffiffiffiffiffiffiffiffiffiffi,f2zF¼.wheref1zF¼qffiffiffiffiffiffiffiffiffiffiffiffif2 2mFÀ2Á m2n B À2m2n 23 24 f2mFÀ2m2n Theinfluenceoffacewidthonaxialforce.Thefacewidth Bisvariable,themodulusmn¼2,thepressureangle ¼28andthenumberofteethZ¼7inthissection.Equation(37)canbesimplifiedf1BFðBÞ FðBÞ¼qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffif2BFðBÞðBÞðBÞ Á1Àf4BFÀf3BF B2B4B2þf5BFðBÞ f2BFðBÞBð40Þ À f3BFðBÞB3Figure10.Radialforceversusengagementangle. wheref1BFðBÞ¼ m2n1þtan2ðÞ2 4B ÁpÁmnpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi,f2BFðBÞ¼1,f3BFðBÞ¼2 1þtanðÞ Áp3m2 22 dimensionsofthenumberofteethZ¼7,modulus mn¼2mm,facewidthB¼10mm,pressureangle¼28.ThevariationintheradialforceisF¼ maxðFrÞÀminðFrÞ maxðFrÞþminðFrÞ2n ,f4BFðBÞ¼2m2n,f5BFðBÞ¼24BZð1þtan2ðÞÞ.ð36Þ Theradialforcefluctuationofthedrivengearis 1.32%andthatofthedrivinggearis0.91%. Axialforce Theaxialforceofthegearpumpisobtainedbyequa-tion(21)Fz¼ ZZ ^ez:pds ð37Þ Therelationshipsbetweenthetoothparameters andtheaxialforceareobtainedbyequations(38)to(40),asisshowninFigure11(a)to(c).Theaxialforceincreaseslinearlywiththenumberofteeth,increasesnonlinearlywiththemodulus,anddecreasesnonli-nearlyasthefacewidthincreases. Theflowrate,axialforceandtorquearerepre-sentedbyanequationwhentheeffectofmodulusisdiscussed,asisshowninequations(18),(24),and(38).Likewise,theflowrate,axialforce,andtorquearerepresentedbyanequationwhentheeffectoffacewidthandnumberofteetharediscussed.Therela-tionshipbetweenmodulusmnandfacewidthBisobtainedfromaboveequationsmn5 B ð41Þ Theinfluenceofmodulusonaxialforce.Themodulusmnisvariable,thefacewidthB¼10mm,thepressure angle¼28andthenumberofteethZ¼7inthissection.Equation(37)canbesimplifiedasf1mFf3mF FðmnÞ¼qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiþf2mF f2mFB22À2À2Ámm22Ànm2n n 22 Outletpressureandpressurefluctuations attheoutlet Theoutletpressuresandfluctuationsaresimulatedbythefinite-volume-basedcodeANSYFluent13.0.ThecomputationdomainhasbeenshownFigure12(a).Table1showsthetoothprofileparametersandgeo-metricalcharacteristicsofgearpump.Thetimederivativeiscalculatedbyafirst-orderimplicitscheme,andthiswayistheonlymethodforsolutionoftransientformulation.ThegradientiscalculatedbyGreen-Gaussnode-basedmethod.ThepressureinboundariesisobtainedbyPRESTO!whichisusedtosolvehigh-speedrotationflowandhighdistortedareaflow.TheQUICKschemeisusedforspatialdis-cretization.Apressure-basedhasbeenselected,sinceitappliestoincompressiblefluid.ThestandardkÀ\"turbulentmodelhasbeenselected,sincethismodelperformswellinexternalgearpump.25ð38Þ ÁpB2324Z. 22 wheref1mF¼ÁpB4,f2mF¼ð1þtanðÞÞB,f3mF¼ Theinfluenceofnumberofteethonaxialforce.ThenumberofteethZisvariable,thefacewidthB¼ 10mm,thepressureangle¼28andthemodulusmn¼2inthissection.Equation(37)canbesimplifiedasFðzÞ¼f1zFþ f2zFZ ð39Þ Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 Zhouetal.197 Figure11.Axialforceversusdifferenttoothprofileparameters:(a)axialforceversusnumberofteeth,(b)axialforceversusmodulus,and(c)axialforceversusfacewidth. Figure12.Thecomputationdomainandoutletmesh:(a)computationdomainofgearpumpand(b)meshatApointofoutlet. Themeshisdynamicformedbytriangularcells,26asshowninFigure12(b).Smoothingmeth-odsandLocalremeshingmethodsareemployedfordynamicmeshupdatemethods.Figure13showscellnumberevolutionincomputationdomain,andthesimulationsareperformedwithgridcontaining15,45,820cells.Thenumberofcellsischangedbyremeshingalgorithmineachtimestepuntilequilibrium,andgridsstabilizedaround84,000. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 198 Table1.Geometricalcharacteristicsandtoothprofileparameters. NumberofteethModulus Diameterofthegears Distancebetweencentersofgears NormalpressureangleofreferencecircleRadiusofthechamberDiameteroftheoutletDiameteroftheinlet 72mm 21.334mm18mm28 10.697mm15mm9mm ProcIMechEPartC:JMechanicalEngineeringScience230(2) TooldesignDisctool Thissectionpresentsthedisctoolsrequiredtomachinehelicalgearswithacircular-arctoothprofile.Thegearcoordinatesystem(O,x,y,z)anddisc-toolcoordinatesystem(O1,X,Y,Z)areshowninFigure17.PointMðx,y,zÞisonthehelicalsurface.ðex,ey,ezÞisunitnormalvectorofpointM.ThenormallineatcontactpointMthroughthedisctoolaxis(Zaxis).Thedisctoolaxisequationinthecoord-inatesystem(O,x,y,z)is ' \"¼ax ð42Þ \"cotðÞ\"¼Àyzwhereaistheshortestdistancebetweentheaxisofthe gearandtheaxisofthedisctool,andistheinstal-lationangleofthetool.Thenormalequationis\"Àxy\"Àyz\"Àzx ¼¼ nznxny ð43Þ Theequationforthecontactlineisobtainedfrom equations(42)and(43) ðaÀxÞðnyþnztanðÞÞþnxðyþztanðÞÞ¼0 ð44Þ Theequationforthecontactlineindisctoolcoord-inatesystem(O1,X,Y,Z)is Figure13.Cellnumberevolutioninthecomputationzone. 9 Xh¼xÀa=Yh¼ycosðÞþzsinðÞ ; Zh¼ÀysinðÞþzcosðÞ ð45Þ Thefluidanalysismakesthefollowingimportantassumptions: 1.Theliquidoilisincompressiblefluid. 2.Thefluidanalyzedisafullyturbulentmodel.3.Theliquidoilcharacteristicsaredynamicviscosity¼0.048Pa.s,andthedensity¼960kg/m3at40C. 4.Themodelissetinletpressure¼0MPa;rotationalspeed¼10,000rpm.Figure14(a)to(d)showsthepressurecontourofrateoutletpressuresat5MPa,15MPa,25MPaand30MPaafter0.005sofoperation.Thepressuredropsfromtheoutlettoinletbyarithmeticprocess-ing,asshowninFigure7.Thereismaximumpressurewherethegearsmesh. Figure15(a)to(d)showstheoutletpressuredistributionatdifferentrateoutletpressuresafter0.005sofoperation.Thepressuresincreasefromthewalltothecenterofoutlet.ThepeakPiscausedbyvortex. TheoutletpressurefluctuationsareshowninFigure16(a)to(d).Theoutletpressurefluctuationskeep0.007–0.008MPaunderdifferentratepressures. Theprofileofthedisctoolisobtainedusingequa-tion(45) qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi) 2R¼X2hþYh Zd¼Zh ð46Þ Hobdesign ThecoordinatesystemsofthehobareshowninFigure18.TheangleÆisdeterminedbytheaxisof ! thehobzpandtheaxisofthegearZ.Supposethatv1isthevelocityofpointMinthegearcoordinate ! system(O2,XP,XP,ZP)andv2isthevelocityof ! pointM(O1,x,y,z)inthehobcoordinatesystem.v12isrelativevelocityandnisanormalvectorofpointMinthegearcoordinatesystem. Thespatialmeshingequationsare ! nÁv12¼0 pÁsinðÆÞðx00cosðþ’2ÞÀy00sinðþ’2ÞÞÀp1cosðÆÞþpÁi21¼ðx0x00þy0y00Þ p1 ! ð47Þð48Þ Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 Zhouetal.199 Figure14.Pressurecontourofdifferentrateoutletpressures:(a)5MPa,(b)15MPa,(c)25MPaand(d)30MPa. wherex0,y0arethetransversetoothprofilecoordin-ates,isaparametervariable,i21istheratiooftrans-missionbetweengearandworm,and’2istherotaryangleofthegear.pisparameterofthehelicalsurface Hp¼2,andHislead. Thehelicalparameterofthehobp1isdefinedasp1¼R0tanðl0Þ ð49Þ whereR0isthereferenceradiusofthehobandl0istheleadangle.Thebasewormoftheaxialdirectionprofilehasazerorakeangleandastraightgashrakeface.Theequationfortheengagingsurfaceis 8 z¼Àðx0sinðþ’2Þþy0cosðþ’2ÞÞsinðÆÞþz2cosðÆÞ ð50Þ Therotaryangleoftheworm’01is ’2z’01¼þ i21p1 Theequationforthebasewormis8 ð52Þ ð53Þ Theprofilehavingapositiverakeangleandstraightgashrakefaceistheintersectinglineoftherakefaceandhelicoid.Therakefaceissomedistanceefromthecentero.Theequationforthepositiverakeangleandstraightgashprofileisobtainedfromequa-tion(53)as 8 Thetransverseequationofthebasewormis& x10ðuÞ¼xcosð’01Þþysinð’01Þy10ðuÞ¼Àxsinð’01Þþycosð’01Þ ð51Þ ð54Þ Thedesignofdisctoolandhobisaccordingtodifferentsituationsofprocessingworkshop. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 200ProcIMechEPartC:JMechanicalEngineeringScience230(2) Figure15.Theoutletpressuredistributionat0.005s:(a)5MPa,(b)15MPa,(c)25MPaand(d)30MPa. Disctoolisusedformillingmachine,andhobisusedforgearhobbingmachine.Disctoolisnon-instantaneous-poleenvelopeinprincipal.However,hobiscompletelyenvelopeinprincipal.Theadvantagesanddisadvantagesofgeneratingtoolsareasfollow: (a)Workingefficiency Disctoolshavesimplestructure,andalsocanbedirectlyprocessedbygrindingwheel.Hobneedstodesignbasicworm,andalsoneedstofinishingmachiningafterroughmachining.Thus,theworkingefficiencyofdisctoolishigherthanHob.(b)Machiningaccuracy Themachiningaccuracyofhobishigherthandisctool.Thus,Hobshouldbeusedwhenmachiningaccuracyisconsidered. Designsoftwareforthecircular-arcgearpump Designsoftwareforthecircular-arcgearpumpisdevelopedinthissection.ThestructureofthedesignsoftwareisshowninFigure19. ThepumpdesigninterfaceisshowninFigure20.Thetoothparametersandperformanceparametersareobtainedusingtheinterfaceofthepumpdesign.Figure21(a)and(b)showsthetoothprofiledesigninterfaceandtheinterfaceoftwogearsmeshing.ThetooldesigninterfaceisshowninFigure22.Thecutterrotationface,cutterrakeface,andcutterradialcross-sectionalcanbeobtainedwiththedesigninterfaceofthedisctool,whichisshowninFigure22(a).Thetransverseprofileofthebasicwormandrakefaceprofileareobtainedwiththedesigninterfaceofthehob,whichisshowninFigure22(b). TestgearsweregeneratedwiththeCADsystem.Figure23showstestgearshavingbasicdimensionsofthenumberofteethZ¼7,modulusmn¼2mm,facewidthB¼10mm,pressureangle¼28,tipdiameterDe¼21:334mmandrootdiameterDf¼14:667mm.ThetestgearswereprocessedbyagrindingwheelunderBM3000Cbroachgrinding.Thegrindingwheelprofilehasthesameprofileasthedisctool,whichwasobtainedwiththeinterfaceshowninFigure22(a).Anexaminationrevealedthatthesizeandaccuracyofthetestgearsmeettherequirements,andtheCADsystemwasthusdemonstratedtoperformwell. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 Zhouetal.201 Figure16.Pressurefluctuationsattheoutlet(a)5MPa,(b)15MPa,(c)25MPaand(d)30MPa. Figure17.Coordinatesystemsanddisctool. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 202ProcIMechEPartC:JMechanicalEngineeringScience230(2) Figure18.Coordinatesystemsofthehobandrakefaceofthehob.(a)Coordinatesystemsofthehoband(b)Rakefaceofthehob. Figure19.Structureofthedesignsoftwareofthecircular-arcgearpump. Figure20.Structureofthedesignsoftwareofthecircular-arcgearpump. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 Zhouetal.203 Figure21.Designinterfaceofthetoothprofileandinterfaceofgearsmeshing.(a)Designinterfaceofthetoothprofileand(b)interfaceoftwogearsmeshing. Figure22.Tooldesigninterfaces.(a)Designinterfaceofthedisctooland(b)designinterfaceofthehob. Conclusion Thispaperinvestigatedthetoothprofiledesignandperformanceanalysisofahigh-speedandhigh-pressurecircular-arcgearpump,andpresentedaCADsystemforgearpumpdesignwithfeaturesofthetoothprofiledesign,tooldesign,andnumericalcontrolofacircular-arcgearpump.Themainresultsobtainedinthestudyareasfollow. 1.Theeffectsoftoothprofileparametersonper-formanceparameterswerediscussed.Theper-formanceparameterschangednonlinearlywiththemodulusandfacewidth.Theflowrate,axialforce,andtorquechangedlinearlywithnumberofteeth. Figure23.Drivinggearanddrivengear. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 204 2.Theflowrate,axialforce,andtorquearerepre-sentedbyanequationwhentheeffectofmodulus,numberofteeth,andfacewidtharediscussed,respectively.TherelationshipbetweenmodulusmnandfacewidthBismn5B.Thisisausefulguidefordesignofcircular-arcgearpump. 3.Theoutletpressurefluctuationswerestudiedwhenthegearpumpwasrunat10,000r/minwithdifferentoutletpressuresof5,15,25and30MPa.Theoutletpressurefluctuationswere0.0071,0.0072,0.0072and0.0075MPa,respectively.Thegearpumphaslowoutletpressurefluctuations.4.ACADsystemwhosefeaturesincludegearpumpdesign,tooldesign,performanceanalysis,andnumer-icalcontrolwasdevelopedforfurtherstudy.Theper-formanceofthesystemwasdemonstratedinthemanufacturingoftestgears.Abasemodelisprovidedforgearpumpwithhighpressureandhighspeed.DeclarationofConflictingInterests Theauthor(s)declarednopotentialconflictsofinterestwithrespecttotheresearch,authorship,and/orpublicationofthisarticle. ProcIMechEPartC:JMechanicalEngineeringScience230(2) 10.ChenC-KandYangS-C.Geometricmodellingfor cylindricalandhelicalgearpumpswithcirculararcteeth.ProcIMechE,PartC:JMechanicalEngineeringScience2009;214:599–607. 11.InagumaY.Apracticalapproachforanalysisofleak-ageflowcharacteristicsinhydraulicpumps.ProcIMechE,PartC:JMechanicalEngineeringScience2012;27(5):980–991. 12.JingX,Qiao-anTandJian-junS.Characteristics ofsurfacetopographyofmechanicalsealduringrunning-in.FluidMachine2011;39:10–12.(inChinese).13.LongW,Xin-zhongCandPeng-gaoZ.Fractalchar-acterizationofsurfacetopographyoftheendfaceofsoftringinrunning-inprocedureformechanicalseal.ChinaSurfaceEng2011;24:78–82.(inChinese). 14.QinTandWangFL.Theleakagecausesandimproving measuresofCBseriesofgearoilpumpbasedonmechanicalmechanics.AdvMaterRes2014;1022:100–103. 15.InagumaY.Frictiontorquecharacteristicsofaninter-nalgearpump.ProcIMechE,PartC:JMechanicalEngineeringScience2011;225:1523–1534. 16.MucchiE,DalpiazGandFernandezdelRinconA. Elastodynamicanalysisofagearpump.PartI:Pressuredistributionandgeareccentricity.PartI:Pressuredistributionandgeareccentricity.MechSystSignalProcess2010;24:2160–2179. 17.MucchiE,DalpiazGandRivolaA.Elastodynamic analysisofagearpump.PartII:Meshingphenomenaandsimulationresults.MechSystSignalProcess2010;24:2160–2179. 18.BaiP.Designandexperimentalresearchonthesealing structureofhigh-pressuregearpump.AdvMaterRes2012;468–471:807–810. 19.Hui-LongC,QiangW,WenyuL,etal.Numerical simulationof3-Dflowinupstreampumpingmechan-icalsealswithspiralgroovesbasedonfluent.LubricatEng2012;37:16–19.(inChinese). 20.MorgridgeD,EvansHP,SnidleRW,etal.Astudyof seallubricationinanaerospacefuelgearpumpinclud-ingtheeffectsofroughnessandmixedlubrication.TribologyTransctions2013;54(5):657–665. 21.JianjunS,LongW,XiuF,etal.Leakageprediction methodforcontactingmechanicalsealswithparallelfaces.ChineseJMechEng2010;23:7–15.22.KocE.Analyticalandexperimentalinvestigationinto thesealingandlubricationmechanismsofthegearendsinpumps.Wear1989;135:79–94.23.MiyagiN,MuraiYandMiyazakiK. Experimentalstudyofaninscribedtrochoidgearpumpforminiaturization.NihonKikaiGakkaiRonbunshu,BHen/TransactJapanSocMechEngPartB2006;72:375–382. skiP,StosiakaM,etal.Problemsrelat-24.KollekW,Osin ingtohighpressuresgearmicropumps.ArchiveCivilMechEng2014;14):88–95. 25.delCampoD,CastillaR,RaushGA,etal.Numerical analysisofexternalgearpumpsincludingcavitation.ASMEJFluidsEng2012;134:088105–1-12. 26.StrasserW.CFDinvestigationofgearpumpmixing usingdeforming/agglomeratingmesh.ASMEJFluidsEng2007;129:476–484. Funding Theauthor(s)receivednofinancialsupportfortheresearch,authorship,and/orpublicationofthisarticle. References 1.EmilianoM,GiorgioDandAlessandroR.Dynamicbehaviorofgearpumps:effectofvariationsinopera-tionalanddesignparameters.Meccanica2011;46:1191–1212. 2.MucchiE,D’EliaGandDalpiazG.Simulationoftherunninginprocessinexternalgearpumpsandexperi-mentalverification.Meccanica2012;47:621–637. 3.JurgenS,HelmutBandHelmutJ.Developmentofanovelminiaturehigh-pressurefuelpumpwithalowspe-cificspeed.JAutomobileEng2013;227:997–1006.4.ErturkN,VernetA,CastillaR,etal.Experimentalana-lysisoftheflowdynamicsinthesuctionchamberofanexternalgearpump.MechSci2011;53:135–144. 5.ZhouHandSongW.Theoreticalflowratecharacteristicsoftheconjugatedinvoluteinternalgearpump.ProcIMechE,PartC:JMechanicalEngineeringScience2013;227:730–743. 6.EatonM,KeoghPSandEdgeKA.Themodelling,pre-diction,andexperimentalevaluationofgearpumpmesh-ingpressureswithparticularreferencetoaero-enginefuelpumps.JSystControlEng2006;220:356–379.7.KasuyaK,NogamiM,MatsunagaT,etal.Toothbear-inganalysisandsurfacedurabilityofsymmetricalcon-formalgears.TransASME1981;103:141–147. 8.MitomeKandSekiK.Anewcontinuouscontactlow-noisegearpump.TransASME1983;105:736–741.9.LeeGS,JungSYandBaeJH.Designofrotorforinter-nalgearpumpusingcycloidandcircular-arccurves.JMechDes2012;134:1–12. Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 Zhouetal.205 Appendix1Notation aa1 B ðex,ey,ezÞDeDfHi21 mn ðnx,ny,nzÞ rradiusofcirculararc pparameterofthehelicalsurfacep¼H shortestdistancebetweentheaxisofthep1helicalparameterofthehob2gearandtheaxisofthedisctool RradiusofpitchcircleshortestdistancebetweentheaxisoftheRbradiusofbasecircle gearandtheaxisofthehobR0referenceradiusofthehobfacewidth Znumberofteeth theunitnormalvectorpressureangletipcircleofgearhelixangle rootcircleofgearparametervariableofhelicalsurfacelead l0leadangleofhob ratiooftransmissionbetweengearandÆinstallationangleofhobtoolworm ’2rotaryangleofthegearnormalmodulus’0rotaryangleofthewormnormalvector 1installationangleofdisctool Downloaded from pic.sagepub.com at Tsinghua University on April 14, 2016 因篇幅问题不能全部显示,请点此查看更多更全内容