KyrilTintarev∗
DepartmentofMathematics
UppsalaUniversitySE-75106Uppsala,Swedenkyril.tintarev@math.uu.se
February2,2008
Abstract
Theconcentrationcompactnessframeworkforsemilinearellipticequationswithoutcompactness,setoriginallybyP.-L.Lionsforcon-strainedminimizationinthecaseofhomogeneousnonlinearity,isextendedheretothecaseofgeneralnonlinearitiesinthestandardmountainpasssettingofAmbrosetti–Rabinowitz.Inthesesetting,existenceofsolutionsatthemountainpasslevelcisverifiedunderasingleassumptionc .2000MathematicsSubjectClassification:35J20,35J60,49J35 Keywords:Semilinearellipticequations,concentrationcompactness,mountainpass,positivesolutions,variationalproblems. 1Introduction InthispaperwestudyexistencefortheclassicalsemilinearellipticprobleminadomainΩ⊂RN, −∆u+λu=f(x,u),(1.1)withtheDirichletboundarycondition.Thenumberλisassumedtobe greaterthanthebottomofthespectrumfortheDirichletLaplacianinΩ.WeconsiderherecaseswherethecorrespondentSobolevimbeddinglackscompactness,namelywhenΩ=RNorwhenthenonlinearityf(x,s)hasthe ∗ growthofthecriticalmagnitude|s|2−1,where2∗=2N HomogeneityofthenonlinearitymeansthatonecanrelplacetheLagrangemultiplierfortheminimizerwith1bymultiplyingtheminimizerof(1.2)byanappropriatepositiveconstant.Sincethelossofcompactnessintheseproblemsisduetonon-compacttransformations(shiftsordilations),discretesequencesofthesetransformationdefineasymptoticproblems(orproblemsatinfinity).Applyingsuchsequencesonecanimmediatelyseethatthein-equalityc≤c∞,wherec∞istheconstrainedminimumforanasymptoticcounterpartof(1.2),isalwaystrue.Inthefamousfour-paperseriesofP.L.-Lions([21,22,23,24],thestrictinequalityc Intheautonomous(f(x,s)=f(s))subcriticalcaseonRN,theimbed-dingofthesubspaceofH1-radiallysymmetricfunctionsintoLpiscompact([16]),sothatexistenceofminimizersin(1.2)followsfromastandardweak 2 2/p. a(x)|u|pdxΩ (1.2) continuity/lowersemicontinuityargument.Lagrangemultipliersherecanbesetto1evenforgeneralnonlinearitiesf(s)ofsubcriticalgrowth,sinceautonomousproblemsonRNpossessadditionalhomogeneity,namelytheonewithrespecttothetransformations→u(·/s).Existenceresultsforthesub-criticalautonomouscaseareduetoBerestyckiandLions[5].IncasetheimbeddingofthesubspaceofradialfunctionsintoL2∗ thecritical isnolongercompact,andconcentrationcompactnessargumentwasusedbyFlucherandM¨uller[18]toprovedexistenceofminimizersforgeneralautonomousnon-linearityfunderthepenaltyconditionc t = f(s)ds, 0 asF(t)>F∞(t),whereF∞istheappropriateasymptoticcounterpartofF.Inthecaseofsubcriticalnonlinearity,morerefinedrealizationsofthepenaltyconditionc 1.2Problemswithouthomogeneity Inproblemswithouthomogeneity,Lagrangemultipliersfordifferentlevelsoftheconstraintfunctionalhavetobeevaluated,whichremainsingeneralanopenproblem.Onecanstillconsiderinthiscaseminimizationofthefunctional G(u)= 1 InsofarasonecanverifythePalais–Smaleconditionforboundedcriti-calsequences,whenthenonlinearitylackshomogeneity,onehastoconsiderunconstrainedminimaxstatementsofthemountainpasstype. Belowweusethefollowingterminology.Anumberc∈RiscalledacriticalvalueofaC1-functionalGinaBanachspace,ifitisthevalueG(u)atacriticalpointu(G′(u)=0),anditiscalledacriticallevelofafunctionalifthereisasequenceuk,calledcriticalsequence,suchthatG(uk)→candG′(uk)→0.ThePalais–Smalecondition(PS)csaysthateverycriticalsequenceatthelevelchasaconvergentsubsequence,inwhichcasethecriticallevelbecomesacriticalvalue. Thereisageneralresultonweakconvergenceofcriticalsequencesforsemilinearellipticequationstoanon-zerosolutionduetoRabinowitz[28],buthisproofdoesnotverify(PS)ccondition. Thereareseveralimportantreasonstoverify(PS)c,suchas:utilityofminimaxstatementstocalculateorestimatecriticalvalues;sortingobtainedbydifferentmethodsbythevaluesofthefunctional;estimatingtheMorseindexofacriticalpoint;andexistenceofmultiplecriticalpointsviaminimaxprinciplesthatrequirethe(PS)c.Ontheotherhand,the(PS)c-conditioninnon-compactproblemsiswellknowntofailoncriticallevelsproducedbydivergentboundedsequencesoftheform uk=w+ (n) mn=1 gkw∞, (n) (1.4) wheregkarepairwiseasymptoticallyorthogonalsequencesoftransforma-tionsresponsibleforthelossofcompactness(actionsoftranslationsordila-tions),wisacriticalpointofthefunctionalandw∞isacriticalpointofthe asymptoticproblem. Ourapproachisbasedontheobservationthat(1.4)isessentiallytheonlywayaboundedcriticalsequencecandiverge,whichleadstoaconclusionthat(PS)cintheAmbrosetti-Rabinowitzsettingsholdswheneverthemountainpasslevelsatisfiesc decompositionfrom[29]. VerificationofPalais–Smaleconditionatthemountainpasslevelistrivialwhentheproblemhashomogeneityandthushasanequivalentconstrainedminimizationstatement.ThishasbeenalreadyobservedbyCerami,Fortu-natoandStruwe[11]whoconsideredautonomousproblemwiththecriticalstemnonlinearityonboundeddomainsinthemountainpasssetting,not-ingthatthesolvabilityconditionc ∗ nonlinearityconsideredinliteratureisoftheforma(x)|u|2plusasubcriticalterm,andthispaperconsidersamoregeneralcase. Ourpaperisorganizedasfollows.Forthesakeofsimplicity,weassumethatthenonlinearityF(x,s)iscontinuouslydifferentiablewithrespecttosandthatitsderivativeadmitsrequiredasymptoticfunctionsasuniformlimits,sotheasymptoticfunctionalsandtheasymptoticequationsarewelldefined.Section2givesageneralizationoftheexistenceresultofFlucherandM¨ullerinthesensethatthenonlinearityatinfinityisdefinedduetodiscretedilations,whichgenerallygivesasmallerF∞(involvedinthepenaltycondi-tionF>F∞)thantheupperlimitdefinedin[18].Acaseinpointhereisthe ∗ nonlinearitysuchthatt→F(et)e−2tisaperiodicfunction.Thisperiodicity ∗ impliesthatF(s)oscillatesaboutthecritical“stem”s2.Somesortofoscil-5 lationsaboutthecritical“stem”arenecessaryforexistenceofsolutionsinthezeromasscase(λ=0).Specifically,underthegrowthbounds(2.18)inthezeromasscase,themountainpasssolutionsoftheautonomousequation(1.1)onRN(whichareequivalentlyprovidedasconstrainedminima)satisfythewell-knownPohoˇzaevidentity(see[27]forboundeddomain,[5]forRN): |∇u|2dx=2∗ (F(u)−λu2)dx.(1.5)RN RN Validityofthisidentityrequiresthatuanditsgradientaredecayingsuffi-cientlyfastatinfinity.Thesedecayratesareverifiedinthecaseλ>0with subcriticalnonlinearityin[5]andforλ=0andthenonlinearityFbounded bythecriticalstemC|u|2∗ in[17].Forpositivesolutions,Pohoˇzaevidentityisequivalentto ∞ s2∗ +1d0s2∗ d|{u≤s}|=0,whichimpliesthat F(s)−λs2 2Autonomouscriticalproblem ∞ WeconsiderthespaceD1,2(RN),N>2,acompletionofC0(Ω)withrespecttothegradientnorm 1/2 u=|∇u|2dx, RN andweequipthespaceD1,2(RN)withthegroupD(N,Z,γ)ofunitaryoper-atorsgeneratedbytheshifts DRN={u→u(·−y),y∈RN} andbytheactionofdiscretedilationswithafixedscalingfactorγ>1, δZ,γ={u→γ def N−2 def 2 andnotethatG∈C(D1,2(RN)).Let u2−ψ(u), (2.3) ΦG={ϕ∈C([0,∞)→H1(RN)):ϕ0=0,limG(ϕt)=−∞}. t→∞ (2.4) IfΦG=∅,wesetc(G)=+∞,otherwise c(G)=inf . Proposition2.1.ThesetΦGisnonemptyifandonlyifsupF>0,inwhich ∞ caseΦGcontainsapathut(x)=u(x/t)withu∈C0andψ(u)>0. 7 def ϕ∈ΦGt∈[0,∞) supG(ϕt).(2.5) Proof.Notfirstthatthepathusisacontinuousmapfrom(0,∞)toD1,2(RN)thatextendsbycontinuityasu0=0:us2=sN−2u2,andinparticularlims→0us=0.Sincethenormiscontinuous,itsufficestoprovecontinuity ∞ ofusinD′(RN).Indeed,withϕ∈C0(Ω)ands,s0>0,byLebesgueconvergencetheorem, uϕ(s0·)ass→s0.usϕ=sNuϕ(s·)→sN0IfsupF>0,thensupψ>0andΦG=∅,sinceitcontainsapathus(x)= u(x/s)withψ(u)>0.Indeed,bythechangeofvariablesinrespectiveintegrals, 1 G(us)= 2 jj f(γ−f(γ− N−2 N−2 2 2 j s),j∈Z,s∈R.(2.6) Itisuniquelydefinedbyitsvaluesontheintervals(1,γ)and(−γ,−1).IfFisdifferentiable,oneobviouslyhas f(s)=γ− N+2 2 j s),j∈Z,s∈R.(2.7) NotethatforanygivenFthatadmitsasymptoticfunctionsF±,theyareselfsimilar. ThefollowingstatementgeneralizesTheorem5.2from[34].Proposition2.2.Assume(2.1)andassume,foreachofthesigns“+”and“−”,thateithersupF±>0,orF±=0withsupF>0.Let κ(t)=supψ(u),t>0 u2=tdef (2.8) 8 andLetκ±(t)bethevalue(2.8)correspondingtothefunctionalsψ±.IfFsatisfies(2.6),orifκ(1)>max{κ−(1),κ+(1)},thenthemaximumin(2.8)isattained. Furthemore,theinequalityκ(t)>κ±(t)holdswheneverF≥F±withthestrictinequalityinaneighborhoundofzero.Proof.1.Bysubstitutionu(s)=v(s/t 1 2 ,(2.9) soitsufficestoprovethelemmafort=1. 2.AssumenowthatFsatisfies(2.6).IfF=0,thenκ=0andanyfunctionwiththegivennormisamaximizerforψ.AssumenowthatsupF>0.Letukbeaminimizingsequencein(2.8),thatis,uk2=1 (n)(n) andψ(uk)→κ(1).Letyk∈RN,jk∈Z,w(n)∈D1,2(RN)andtheindexsetsN+∞,N−∞,N0⊂NbeasinTheorem6.1.NotethatbyLemma6.2, κ(t)=limψ(uk)=ψ(w(n)).(2.10) n∈N Atthesametimefrom(6.3) 1=uk≥ 2 n∈N w(n)2. (2.11) Letv(n)(x)=w(n)(snx)withsn=w(n) 2 Relations(2.13)and(2.14)canholdsimultaneouslyifandonlyifthereisan0∈Nsuchthatsn0=1,whilesn=0whenevern=n0.Consequently, N−2 wehavefrom(6.4)uk−γ uk(γ·+yk0),wehaveuˆk→w(n0)inL2(RN).Atthe sametime,bytheweaklowersemicontinuityofnorms,w(n0)2≤1,while ∗ bycontinuityofψinL2(RN)wehaveψ(w(n0))=κ(1).Sincethelattercanholdonlywhenw(n0)2=1,w(n0)isthedesiredmaximizer. 3.Considernowthegeneralcasewithκ(1)>κ±(1)andnotethat,sinceF±satisfies(2.6),themaximumforκ±(1)isattainedduetotheprevious nn step.Letukbeaminimizingsequencein(2.8)andletyk∈RN,jk∈Z,wn∈D1,2(RN)andtheindexsetsN+∞,N−∞,N0⊂NbeasinTheorem6.1.NotethatbyLemma6.2, (n)(n) ψ+(w(n)),(2.15)ψ−(w)+ψ(w)+κ(t)=limψ(uk)= 2 jk (n0) −jk (n0) (n) ∗ n∈N0n∈N−∞n∈N+∞ Let,asinthestep2,v(n)(x)=w(n)(snx)withsn=w(n) sNn κ(1)n∈N −∞ 2 (2.16) + κ+(1) )<1,relations(2.16)and(2.14)canhold simultaneouslyifandonlyifthereisan0∈N0suchthatsn0=1,whilesn=0 (n) whenevern=n0.Consequently,wehavefrom(6.4)uk−w(n0)(·−yk0)→0 ∗ inL2(RN).Similarlytothestep2weconcludethatw(n0)isthedesiredmaximizer. 4.ThelastassertionofthepropositionisobviousifwetakeintoaccountthattherangeofanyfunctioninD1,2(RN)isaconnectedsetwhoseclosurecontainszero. κ(1) Remark2.3.Notethatonealwayshasκ(t)≥κ±(t),sinceifwisamaxi-mizerforκ±(1),thenψ(γN−2 N−2 x) isamaximizerfort>0. 10 Wenowconnectthemaximizers(2.8)withthemountainpassvaluesforG. Proposition2.4.AssumethatsupF>0andthat |f(s)|≤C|s|2 ∗−1 .(2.18) Thenanymaximizerwfor(2.8)correspondingto t=t0def =(2∗ κ(1)) − 2 2 sN−2v2−sNψ(v)hasa singlecriticalpoint,amaximum,whichisnecessarilyattainedats=1sinceG′(v)=0.Then c(G)≤maxs≥0 G(vs)=G(v), whichverifies(ii). Assumenowthat(2.8)hasamaximizerw.ByRemark2.3,wisacriticalpointofG.Bytheargumentabove,c(G)≤G(w).Ontheotherhand,sinceanypathus∈ΦGstartsattheoriginandisunbounded,wehave,usingthe notationuˆ=u(u− 2 2N 2r2 s−r2N 2r2s −r 2 r2−r 2N 3 Non-autonomouscriticalprobleminRN. Letnowf(x,s)∈C(RN×R),N>2. Assumethatforsomeγ>1thefollowinglimitsexistandthatthecon-vergenceisuniform: f0(s)def =|xlim|→∞ f(x,s), f−(s)def = j∈Zlim,j→−∞ γN+2 2 j s),f+(s)def = j∈Zlim γ N+2 2 j ,j→+∞ s). Let F(x,s)= s f(x,σ)dσ, 0 andassumetheinequality |f(x,s)|≤C|s|2 ∗−1 ,s∈R,x∈RN. Let ψ(u)= F(x,u)dx, RN G(u)= 1(3.1) casetheinequalityc(G) t;kdef =γ N−2 jk s), itiseasytoseethatforanyǫ>0thereisakǫ∈Nsothatforallk>kǫandt≥ǫ, ψ(wt;k)= F(x,wN t;k)=tN Fk(tx,w)→tNψ#(w)=ψ#(wt).RRN Letusredefinethepathwt;kfort∈[0,ǫ],by t Proof.Sincec(G)<∞,supF>0andfromthecondition(R)triviallyfollowsthemountainpassgeometry,namely,thenon-emptyΨGandc(G)>0.Notealsothatonecanpasstothelimitin(R),sotheconditionholdsalsoforF#.Bythestandardmountainpassreasoning,thefunctionalGpossessesacriticalsequenceuk∈D1,2(RN),thatis,G(uk)→c(G)andG′(uk)→0.Alsobyastandardargument,itfollowsfrom(R)thatthesequenceukisboundedinD1,2(RN).ConsidernowtherenamedsubsequenceofukgivenbyTheorem6.1.Ifw(n)=0in(6.4)foralln≥2,thenuk→w(1)in∗ L2,ψ′(uk)convergesinD1,2(RN),andfromG′(uk)→0itfollowsthatukconvergesinD1,2(RN)toacriticalpointofGatthelevelc(G). Letusassumenowthatforsomem≥2,w(m)=0.Dueto(6.3)andLemma6.5,wehavethefollowingestimateofc(G)frombelow: (n)(n)(1) G−(w(n)).G+(w)+G0(w)+c(G)=limG(uk)≥G(w)+ n∈N0 n∈N+∞ n∈N−∞ (3.6) Notethatwithnecessity,w(1)isacriticalpointofG,andw(n),n≥2,arecriticalpointsofcorrespondentG#.LetGm=G0ifm∈N0,Gm=G+ifm∈N+andGm=G−ifm∈N−.Thecorrespondentasymptoticnonlinearity1 (1) wewilldenoteasFm.Duetocondition(R),G(w)=[ 4Criticalcase,problemsindomains LetnowΩ⊂RN,N>2,beadomainwith Remark4.3.RepetitionoftheproofofTheorem3.2alsogivesthatifFislikeinTheorem3.2,Ω⊂RNisadomainandinequalities(3.4)aresatisfied, 1,2 (Ω)satisfies(PS)c-thenthefunctionalGunderstoodinrestrictiontoD0 conditionatthemountainpasslevelc(G;Ω)andthushasacriticalpointatthislevel. Remark4.4.Theorem4.2andRemark4.3,unliketheircounterpartonRN,cannotclaimthatc(G;Ω) ∗ offersacounterexampleforN=3andF(s)=|s|2+λu2withsufficientlysmallpositiveλ. Ontheotherhand,ifΩisaboundeddomain,N>3andF(x,s)≥F+(s)+ǫs2withsomeǫ>0,thenc(G;Ω) ∞ (Ω)beasequenceconvergentinD1,2(RN)toacriticalProof.Letwk∈C0 pointwforG+satisfyingG+(w)=c(G+). ws;j,k(x)=γ N−2 ǫ wǫ;j,k.Then,with Ft(x,u)=tNF(tx,t− N−2 2 1 sN−2wk2−sNψ+(wk). Itiseasytoseethatask→∞,therighthandsideconvergesto max s≥0 5Subcriticalcase Considernowthe“positivemass”caseλ>0withthefunctionalψdefinedbyexpression(2.2)ontheSobolevspaceH1(RN),N≥1,equippedwiththeequivalentnormLet u2= (∇|u|+λ|u|2)dx. RN G(u)= 1 Proof.ThebeginningoftheproofiscompletelyanalogoustothatforThe-orem3.2andcanbeabbreviated.WeapplyTheorem6.1totheboundedcriticalsequence,noting,similarlytoRemark4.1,thatN−∞=∅and,more-over,N+∞=∅sinceF+=0.With(6.6)takingtheroleof(6.5)wearriveatanimmediateanalogof(3.6): (1) G(w)+G∞(w(n))≤c(G) AsintheproofofTheorem3.2,allthetermsinthelefthandsidearenon-negativedueto(R).Assumethatthereexistsm≥2suchthatw(m)=0. Observethepatht→w(m)(·/t)isoftheclassΦG∞.Indeed,itscontinuityinD1,2(RN)-normwasshowninProposition2.1,andtheproofofremainingcontinuity,inL2normisanalogous.Thenonlinearitysatisfiestherequire-mentsof[5]forPohoˇzaevidentity(1.5).Thus,since 1 (F∞(w(m))−λ|w(m)|2)dx= RN 2 N tN−2w(m)2D1,2(RN)−t RN (F∞(w(m))−λ|w(m)|2)dx, convergesto−∞whent→∞.Furthermore,themaximumofthisexpression overt≥0isisclearlyattainedatasinglepoint,whichisnecessarilyt=1,sincesince(G′∞(w(m)),w(m))=0.Thus c(G∞)≤maxG∞(w(m)(·/t))=G∞(w(m))dx. t≥0 (5.6) Ontheotherhand,since,G∞(w(n))≥0foralln>1andG(w(1))≥0,wehavefrom(5.5), G∞(w(m))≤c(G) (Ω)isconnectedandcontainszero.anyfunctioninH0 18 Remark5.3.Theorem5.2canbetriviallygeneralizedtothecaseofperiodiccoefficients.LetV∈L∞(RN),V>0,beZN-periodic,thatissatisfy V(x+y)=V(x)forallx∈RN,y∈ZN WemayequipH1(RN)withanequivalentnorm u2=(|∇u|2+V(x)u2)dx, RN (5.7) Assumethatthereisafunctionf∞∈C(RN×R),ZN-periodicinthefirst argument,suchthatf(x+yk,s)→f∞(x,s)foranysequenceyk∈ZN,|yk|→∞.Theorem5.2remainstruealsounderthesemodifications. 6 6.1 Appendix WeakconvergencedecompositioninD1,2(RN) ThefollowingtheoremisTheoremfrom[34],withthedilationfactor2replacedbygeneralγ. Theorem6.1.Letuk∈D1,2(RN),N>2,beaboundedsequence.Let (n)(n) γ>1.Thereexistw(n)∈D1,2(RN),yk∈RN,jk∈Zwithk,n∈N,anddisjointsetsN0,N+∞,N−∞⊂N,suchthat,forarenumberedsubsequenceofuk, w (n) =w-limγ −N−2 2 jk (n) w(n)(γjk(·−yk))→0inL2(RN), (n) (n) ∗ (6.4) andtheseriesaboveconvergesuniformlyink. (1)(n)(n) Furthermore,1∈N0,yk=0;jk=0whenevern∈N0;jk→−∞ (n)(n) (resp.jk→+∞)whenevern∈N−∞(resp.n∈N+∞);andyk=0 (n)(n) whenever|γjkyk|isbounded. 19 Thefollowingstatementsare,respectively,Lemma5.6(anelementarymodification)andRemark3.4from[34]. Lemma6.2.LetF∈C(RN×R)satisfy|F(x,s|≤c|s|2,letγ>0,N>2,andassumethatthefollowinglimitsexistandareuniforminx∈RN: F+(s)= def j∈Z,j→+∞ ∗ lim γ−NJF(γ−jx,γ N−2 2 j), F0(s)=limF(x,s). |x|→∞ (n) def Letuk∈D1,2(RN),w(n),yk∈RNandletjk∈Z,N0,N+∞,N−∞⊂NbeasprovidedbyTheorem6.1.Then F(uk)(6.5)lim k→∞RN F−(w(n)).F+(w(n))+F0(w(n))+= n∈N0 RN n∈N+∞ RN n∈N−∞ RN (n) Lemma6.3.LetF∈C(RN×R)satisfy5.2,5.3,andassumethatthe followinguniformlimitexists: F∞(s)=limF(x,s). |x|→∞def Letuk∈H1(RN),w(n),yk∈RNbeasprovidedbyTheorem6.1withN±=∅.Then F∞(w(n)).(6.6)F(uk)=lim k→∞ RN n∈N RN (n) Acknowledgments TheauthorthanksMosheMarcusandIanSchindlerfortheirencouragingre-marks.ThispaperwaswrittenasVisitingProfessoratUniversityofToulouse 1andtheauthorexpresseshisgratitudetoJ.FleckingerandtherestofthefacultyatCeremathfortheirwarmhospitality. 20 References [1]AmbrosettiA.,RabinowitzP.H.,Dualvariationalmethodsincritical pointtheoryandapplications.J.FunctionalAnalysis14(1973),349–381.[2]BartschT.,Wang,Z.-Q.,Willem,M.,TheDirichletproblemforsuper-linearellipticequations.StationarypartialdifferentialequationsVol.2,1–55,Handb.Differ.Equ.,Elsevier/North-Holland,Amsterdam,2005.[3]Br´ezisH.,CoronJ.M.,ConvergenceofsolutionsofH-systemsorhowto blowbubbles,ArchiveRat.Mech.Anal.(1985),21–56.[4]BartschT.WangZh.Q.Existenceandmultiplicityresultsforsomesu-perlinearellipticproblemsonRN.Comm.PartialDifferentialEquations20(1995)1725–1741.[5]Berestycki,H.;Lions,P.-L.;NonlinearscalarfieldsequationsI,Existence ofagroundstateArch.Rat.Mech.Anal.82(1983),313–346[6]Bliss,G.,Anintegralinequality,J.LondonMath.Soc.5(1930),44–46.[7]ChabrowskiJ.,Concentration-compactnessprincipleatinfinityand semilinearellipticequationsinvolvingcriticalandsubcriticalSobolevexponents,Calc.Var.3(1995),493–512.[8]Brezis,H.,Lieb,E.,Arelationbetweenpointwiseconvergenceoffunc-tionsandconvergenceoffunctionals,Proc.Amer.Math.Soc.88(1983),486-490.[9]Br´ezis,H.,NirenbergL.,Positivesolutionsofanellipticequa-tionwithanonlinearityinvolvingcriticalSobolevexponent, Comm.PureAppl.Math.36(1983),437–476.[10]Cao,D.,Peng,S.,Aglobalcompactnessresultforsingularellipticprob-lemsinvolvingcriticalSobolevexponent,Proc.Amer.Math.Soc.131(2003),1857-1866[11]Cerami,G.,Fortunato,D.,Struwe,M.,Bifurcationandmultiplicityre-sultsfornonlinearellipticproblemsinvolvingcriticalSobolevexponents,Ann.Inst.H.Poincar´eAnal.NonLin´eaire1(1984),341–350. 21 [12]ChabrowskiJ.,SzulkinA.,OnasemilinearSchr¨odingerequationwith criticalSobolevexponent.Proc.Amer.Math.Soc.130(2002),no.1,85–93(electronic).[13]ChabrowskiJ.,Weakconvergencemethodsforsemilinearellipticequa-tions.WorldScientificPublishingCo.,Inc.,RiverEdge,NJ,1999.[14]ChabrowskiJ.,YangJ.,Existencetheoremsforellipticequationsinvolv-ingsupercriticalSobolevexponentAdvancesinDifferentialEquations,2(1997),231–256.[15]CotiZelatiV.Criticalpointtheoryandapplicationstoellipticequations inRn.(Englishsummary)Nonlinearfunctionalanalysisandapplicationstodifferentialequations(Trieste,1997),102–121,WorldSci.Publ.,RiverEdge,NJ,1998.[16]Esteban,M.J.;Lions,P.-L.,Acompactnesslemma,NonlinearAnal.7 (1983),381–385.[17]FlucherM.,M¨ullerS.,Radialsymmetryanddecayrateofvariational groundstatesinthezeromasscase,SIAMJ.Math.Anal.20,712–719(1998)[18]FlucherM.,M¨ullerS.,Concentrationoflowenergyextremals, Ann.Inst.H.Poincar´e-Analysenon-lineaire16,269-298(1999).[19]FlucherM.,Variationalproblemswithconcentration,ProgressinNon-linearDifferentialEquationsandtheirapplications36,Birkh¨auser1999.[20]Lieb,E.,OnthelowesteigenvalueoftheLaplacianfortheintersectionoftwodomains.Invent.Math.74,441-448(1983)[21]LionsP.-L.,Theconcentration-compactnessprincipleinthecalculusof variations.Thelocallycompactcase,part1.Ann.Inst.H.Poincare,Anal-ysenonlin´eaire1,109-1453(1984)[22]LionsP.-L.,Theconcentration-compactnessprincipleinthecalculusofvariations.Thelocallycompactcase,part2.Ann.Inst.H.Poincare,Anal-ysenonlin´eaire1,223-283(1984) 22 [23]LionsP.-L.,Theconcentration-compactnessprincipleinthecalculusof variations.Thelimitcase,part2,RevistaMatematicaIberoamericana,1.1145-201(1985)[24]LionsP.-L.,Theconcentration-compactnessprincipleinthecalculusof variations.Thelimitcase,part2,RevistaMatematicaIberoamericana1.245-121(1985)[25]LionsP.-L.,SolutionsofHartree-FockequationsforCoulombsystems, Comm.Math.Phys.109,33-97(1987).[26]DelPinoM.,FelmerP.,Leastenergysolutionsforellipticequationsin unboundeddomains,Proc.RoyalSoc.Edinburgh126A,195-208(1996)[27]PohoˇzaevS.I.,Eigenfunctionsoftheequation∆u+λf(u)=0. Sov.Math.Doklady5,1408-1411(1965)[28]RabinowitzP.H.,OnaclassofnonlinearSchr¨odingerequations.Z. Angew.Math.Phys.43(1992),270–291.[29]SchindlerI.,TintarevK.,Anabstractversionoftheconcentrationcom-pactnessprinciple,RevistaMat.Complutense15,1-20(2002).[30]SirakovB.,Existenceandmultiplicityofsolutionsofsemi-linearelliptic equationsinRN.Calc.Var.PartialDifferentialEquations11(2000),119–142.[31]Struwe,M.Aglobalcompactnessresultforellipticboundaryvalueprob-lemsinvolvinglimitingnonlinearities,Math.Z.187(1984),511-517.[32]Talenti,G.,BestconstantinSobolevinequality,Ann.Mat.PuraAppl. (4)110(1976),353–372.[33]Tintarev,K.Concentration-compactnessprincipleformountainpass problems,inProceedingsofConferenceonDifferentialandDifferenceEquations,August1-5,2005,Melbourne,Florida,HindawiPublishingCorporation,2006.[34]TintarevK.,FieselerK.-H.,Concentrationcompactness:functional-analyticgroundsandapplications,ImperialCollegePress2007. 23 [35]WillemM.,Minimaxtheorems.ProgressinNonlinearDifferentialEqua-tionsandtheirApplications,24.Birkh¨auserBoston,Inc.,Boston,MA,1996. 24 因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yule263.com 版权所有 湘ICP备2023023988号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务