搜索
您的当前位置:首页正文

中考数学知识点总结 方程(组)(7大知识点,细分小知识点) 北师大版

来源:二三娱乐
方程(组)

考点一、一元一次方程的概念 (6分) 1、方程

含有未知数的等式叫做方程。 2、方程的解

能使方程两边相等的未知数的值叫做方程的解。 3、等式的性质

(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。 (2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。 4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程axb(0x为未知数,a0)叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

考点二、一元二次方程 (6分) 1、一元二次方程

含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式

ax2bxc0(a0),它的特征是:等式左边十一个关于未知数x的二次多项式,等式

右边是零,其中ax叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

考点三、一元二次方程的解法 (10分) 1、直接开平方法

利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如(xa)b的一元二次方程。根据平方根的定义可知,xa是b的平方根,当b0时,xab,xab,当b<0时,方程没有实数根。 2、配方法

配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。配方法的理论根据是完全平方公式a2abb(ab),把公式中的a看做未知数x,并用x代替,则有x2bxb(xb)。 3、公式法

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程axbxc0(a0)的求根公式:

222222222bb24ac2x(b4ac0)

2a4、因式分解法

因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点四、一元二次方程根的判别式 (3分)

2根的判别式:一元二次方程axbxc0(a0)中,b4ac叫做一元二次方程

2ax2bxc0(a0)的根的判别式,通常用“”来表示,即b24ac

考点五、一元二次方程根与系数的关系 (3分)

如果方程axbxc0(a0)的两个实数根是x1,x2,那么x1x22bc,x1x2。aa也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二

次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。 考点六、分式方程 (8分) 1、分式方程

分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法

解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程

(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法 换元法:

换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 考点七、二元一次方程组 (8~10分) 1、二元一次方程 含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是(

2、二元一次方程的解

使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。 3、二元一次方程组

两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。 4二元一次方程组的解

使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法 (1)代入法(2)加减法 6、三元一次方程

把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。 7、三元一次方程组 由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

因篇幅问题不能全部显示,请点此查看更多更全内容

Top