专利名称:一种基于显著性前景内容的低光照图像增强方法专利类型:发明专利
发明人:杨勐,郝鹏程,王爽,郑南宁申请号:CN202010056934.2申请日:20200116公开号:CN111275642A公开日:20200612
摘要:本发明公开了一种基于显著性前景内容的低光照图像增强方法,学习低光照图像中的显著性前景内容信息并与增强过程融合,将低光照图像输入低光照显著注意力深度网络模型SAM得到输出的显著图;向深度预测网络模型输入低光照图像并输出对应的深度图;将获得的深度图作为引导图对显著图进行引导滤波,得到显著前景图;对于输入的低光照图像,以显著前景图作为增强程度的权重,采用LIME增强算法对低光照图像进行不同程度的增强,最终得到基于显著性前景内容增强的结果图。本发明能够针对低光照图像中的显著性前景内容区域有效的增强,同时抑制背景和无关内容区域的过度增强并抑制噪声。
申请人:西安交通大学
地址:710049 陕西省西安市咸宁西路28号
国籍:CN
代理机构:西安通大专利代理有限责任公司
代理人:高博
更多信息请下载全文后查看
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- yule263.com 版权所有 湘ICP备2023023988号-1
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务