俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据科学家、设计师或数据分析员;我们更需要重新思考我们所知道的数据可视化,图表和图形还只能在一个或两个维度上传递信息, 那么他们怎样才能与其他维度融合到一起深入挖掘大数据呢?此时就需要倚仗大数据可视化(BDV)工具,因此,笔者收集了适合各个平台各种行业的多个图表和报表工具,这些工具中不乏有适用于NET、Java、Flash、HTML5、Flex等平台的,也不乏有适用于常规图表报表、甘特图、流程图、金融图表、工控图表、数据透视表、OLAP多维分析等图表报表开发的。为了进一步让大家了解如何选择适合的数据可视化产品,本文将围绕这一话题展开,希望能对正在选型中的企业有所帮助。下面就来看看全球备受欢迎的的可视化工具都有哪些吧!
一、Excel
Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
二、Google Chart API
三、D3
四、R
五、Visual.ly
六、Processing
七、Leaflet
八、Openlayers
九、PolyMaps
十、Charting Fonts
Charting Fonts是将符号字体与字体整合(把符号变成字体),创建出漂亮的矢量化图标。
十一、Gephi
十二、CartoDB
十三、Weka
十四、NodeBox
十五、Kartograph
十六、Modest Maps
十七、Tangle
十八、Crossfilter
十九、Raphael
二十、jsDraw2DX
二十一、Pizza Pie Charts
二十二、Fusion Charts Suit XT
二十三、iCharts
二十四、Modest Maps
二十五、Raw
二十六、Springy
二十七、Bonsai
二十八、Cube
二十九、Gantti
三十、Smoothie Charts
三十一、Flot
三十二、Tableau Public
三十三、Many Eyes
三十四、Anychart
三十五、Dundas Chart
三十六、TimeFlow
三十七、Protovis
三十八、Choosel
三十九、Zoho Reports
四十、Quantum GIS(QDIS)
四十一、NodeXL
四十二、OpenStreetMap
四十三、OpenHeatMap
四十四、Circos
四十五、Impure
四十六、Polymaps
四十七、Rickshaw
四十八、Sigma.js
四十九、Timeline
五十、BirdEye
五十一、Arbor.Js
五十二、Highchart.js
五十三、Paper.js
五十四、Visualize Free
五十五、GeoCommons
传统的数据可视化工具仅仅将数据加以组合,通过不同的展现方式提供给用户,用于发现数据之间的关联信息。近年来,随着云和大数据时代的来临,数据可 视化产品已经不再满足于使用传统的数据可视化工具来对数据仓库中的数据抽取、归纳并简单的展现。新型的数据可视化产品必须满足互联网爆发的大数据需求,必须快速的收集、筛选、分析、归纳、展现决策者所需要的信息,并根据新增的数据进行实时更新。因此,在大数据时代,数据可视化工具必须具有以下特性:
1. 实时性:数据可视化工具必须适应大数据时代数据量的爆炸式增长需求,必须快速的收集分析数据、并对数据信息进行实时更新;
2. 简单操作:数据可视化工具满足快速开发、易于操作的特性,能满足互联网时代信息多变的特点;
3. 更丰富的展现:数据可视化工具需具有更丰富的展现方式,能充分满足数据展现的多维度要求;
4. 多种数据集成支持方式:数据的来源不仅仅局限于数据库,数据可视化工具将支持团队协作数据、数据仓库、文本等多种方式,并能够通过互联网进行展现。
数据可视化技术在现今是一个新兴领域,有越来越多的发展、研究等数据可视化分析,在诸如美国这些国家不断被需求。企业获取数据可视化功能主要通过编程和非编程两类工具实现。
主流编程工具包括以下三种类型:从艺术的角度创作的数据可视化,比较典型的工具是 Processing.js,它是为艺术家提供的编程语言。从统计和数据处理的角度,R语言是一款典型的工具,它本身既可以做数据分析,又可以做图形 理。介于两者之间的工具,既要兼顾数据处理,又要兼顾展现效果,D3.js是一个不错的选择。像D3.js这种基于Javascript的数据可视化工具更适合在互联网上互动的展示数据。