1. correlation:有线性的皮尔逊相关系数(Pearson Correlation Coefficient)和数据排序相关的斯皮尔曼等级相关(Spearman’s correlation coefficient)
2. 互信息(mutual information): 可衡量非线性的关系 ,或者 延迟的互信息(delayed mutual information)
3. 格兰杰因果关系检验(granger causality)
诺贝尔经济学奖获得者,英国经济学家克莱夫·格兰杰(Sir Clive William John Granger),是著名的经济时间序列分析大师,被认为是世界上最伟大的计量经济学家之一。Granger从预测的角度给出了因果关系的一种描述性定义,这就是我们现在所熟知的Granger因果关系。
Granger指出:如果一个变量X无助于预测另一个变量Y,则说X不是Y 的原因;相反,若X是Y的原因,则必须满足两个条件: 第一,X应该有助于预测Y,即在Y关于Y的过去值的回归中,添加X的过去值作为独立变量应当显著地增加回归的解释能力;第二,Y不应当有助于预测X,其原因是,如果X有助于预测Y,Y也有助于预测X,则很可能存在一个或几个其他变量,它们既是引起X变化的原因, 也是引起Y变化的原因。现在人们一般把这种从预测的角度定义的因果关系称为Granger因果关系。
4. 传递熵(transfer entropy)
什么是transfer entropy 它其实就是一个条件分布带来的探测到时间序列间的不对称性。说的学术一点:传递熵是在错误假设传递概率函数为p(in+1|in(k)),而不是p(in+1|in(k),jn(l))的情况下,预测系统状态额外需要的信息。这个信息由Y到X和由X到Y是不对称,这种不对称就带来了,驱动和响应的关系的建立。不过他和granger 因果性检验之间的等价性在一篇工作中已经证明。而且传递熵能对非线性时间序列应用,对这种granger的因果性也很敏感。
5. 收敛交叉映射(convergent cross mapping)
Granger Causality是经典方法,在计量经济学的时间序列分析中有较多的应用。 除此之外,还有Convergent cross mapping (CCM)。Granger因果模型的前提假设是事件是完全随机的,但现实情况有很多是非线性、动态且非随机的,Granger模型对这一类状况不适用。CCM则能适用于这一类场景,在多组时间序列中构建出因果网络。 感兴趣的可以读一下这篇发表在Science上的文章: