搜索
您的当前位置:首页正文

7个步骤掌握使用python进行机器学习

来源:二三娱乐

                                    7个步骤掌握使用python进行机器学习

姓名:余玥     学号:16010188033

【嵌牛导读】:机器学习专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

【嵌牛鼻子】:python/机器学习

【嵌牛提问】:如今使用python进行机器学习?

【嵌牛正文】:

开始。这是最容易令人丧失斗志的两个字。迈出第一步通常最艰难。当可以选择的方向太多时,就更让人两腿发软了。

从哪里开始?

本文旨在通过七个步骤,使用全部免费的线上资料,帮助新人获取最基本的 Python 机器学习知识,直至成为博学的机器学习实践者。这篇概述的主要目的是带领读者接触众多免费的学习资源。这些资源有很多,但哪些是最好的?哪些相互补充?怎样的学习顺序才最好?

我假定本文的读者不是以下任何领域的专家:

▪  机器学习

▪  Python

▪  任何 Python 的机器学习、科学计算、数据分析库

如果你有前两个领域其一或全部的基础知识,可能会很有帮助,但这些也不是必需的。在下面几个步骤中的前几项多花点时间就可以弥补。

第一步:基本 Python 技能

如果要使用 Python 进行机器学习,拥有对 Python 有基础的理解非常关键。幸运的是,Python 是当前普遍使用的流行语言,并纳入了科学计算和机器学习的内容,所以找到入门教程并不困难。在选择起点时,很大程度上要取决于你之前的 Python 经验和编程经验。

如果你之前没有编程知识,建议你阅读这本免费电子书,然后再接触其他学习材料:

如果你之前有编程知识,但不是Python的,又或者你的Python水平很基础,推荐下列一种或几种教程:

对于想要速成课程的人,这里有:

第二步:机器学习基础技能

好消息是,你不必拥有博士级别的机器学习理论能力才能进行实践,就如同不是所有程序员都必须接受计算机理论教育才能写好代码。

除了吴恩达的课程以外,还有很多其他视频教程。我是 Tom Mitchell 的粉丝,下面是他(与Maria-Florina Balcan 共同完成的)最新的课程视频,对学习者非常友好:

你不需要现在看完全部的笔记和视频。比较好的策略是向前推进,去做下面的练习,需要的时候再查阅笔记和视频。比如,你要做一个回归模型,就可以去查阅吴恩达课程有关回归的笔记以及/或者 Mitchell 的视频。

第三步:科学计算 Python packages 一览

好了。现在我们有了 Python 编程经验,并对机器学习有所了解。Python 有很多为机器学习提供便利的开源库。通常它们被称为 Python 科学库(scientific Python libraries),用以执行基本的数据科学任务(这里有一点程度主观色彩):

学习以上这些内容可以使用:

下面这个 pandas 教程也不错,贴近主题:

在后面的教程中你会看到其他一些 packages ,比如包括 Seaborn ,一个基于 matplotlib 的可视化库。前面提到的 packages (再次承认具有一定主观色彩)是许多 Python 机器学习任务的核心工具。不过,理解它们也可以让你在之后的教程中更好理解其他相关 packages。

好了,现在到了有意思的部分…..

第四步:开始用 Python 进行机器学习

Python。搞定。

机器学习基础。搞定。

Numpy。搞定。

Pandas。搞定。

Matplotlib。搞定。

是时候用 Python 的标准机器学习库,scikit-learn,实现机器学习算法了。

scikit-learn 算法选择图

下面许多教程和练习都基于交互式环境 iPython (Jupyter) Notebook 。这些 iPython Notebooks有些可以在网上观看,有些可以下载到本地电脑。

下面是 scikit-learn 的入门教程。在进行下一个步骤之前,推荐做完下列全部教程。

对于 scikit-learn 的整体介绍,它是 Python 最常用的通用机器学习库,包含knn最近邻算法:

更深入更宽泛的介绍,包含一个新手项目,从头到尾使用一个著名的数据集:

专注于 scikit-learn 中评估不同模型的策略,涉及训练集/测试集拆分:

第五步:Python 机器学习主题

在 scikit-learn 打下基础以后,我们可以探索更多有用的常见算法。让我们从最知名的机器学习算法之一,k-means 聚类开始。对于无监督学习问题,k-means 通常简单有效:

接下来是分类,让我们看看史上最流行的分类方法之一,决策树:

分类之后,是连续数字变量的预测:

通过逻辑斯蒂回归,我们可以用回归解决分类问题:

第六步:Python高级机器学习

接触过 scikit-learn,现在让我们把注意力转向更高级的内容。首先是支持向量机,一个无需线性的分类器,它依赖复杂的数据转换,把数据投向高维空间。

接下来是随机森林,一种集成分类器。下面的教程通过 Kaggle Titanic Competition讲解。

降维是一种减少问题涉及的变量数目的方法。PCA 主成分分析是一种无监督学习降维的特殊形式:

在开始下一步之前,可以暂停一下,回想我们在短短的时间已经走了多远。

通过使用 Python 和它的机器学习库,我们涵盖了一些最常用最知名的机器学习算法( knn 最近邻,k-means 聚类,支持向量机),了解了一种强有力的集成方法(随机森林),涉及了一些其他机器学习支持方案(降维,模型验证技巧)。在一些基础机器学习的技巧的帮助下,我们开始有了一个渐渐丰富的工具箱。

在结束以前,让我们给工具箱增加一个需求很大的工具:

第七步 :Python 深度学习

学习,深深地。

本文的最后一部分并不想成为某种深度学习示范教程。我们会关注基于两个Python深度学习库的简单应用。对于想了解更多的读者,我推荐下面这本免费在线书:

Theano是我们关注的第一个 Python 深度学习库。根据作者所说:

作为一个 Python 库,Theano 让你可以有效定义、优化、评估包含多维数组的数学表达式。

下面的 Theano 深度学习教程很长,但非常不错,描述详细,有大量评论:

我们关注的另一个库是 Caffe。根据它的作者所说:

Caffe 是一个深度学习框架。开发过程中时刻考虑着表达式、速度、模型。 它是由 Berkeley Vision and Learning Center (BVLC) 和社区贡献者共同开发的。

我不敢保证Python机器学习是速成的或简单的。但只要投入时间,遵循这七个步骤,你无疑会对于这个领域拥有足够的熟练度和理解,会使用流行的 Python 库实现许多机器学习算法,甚至当今深度学习领域的前沿内容。

Top